Skip to main content
Log in

Physiology of yeasts in relation to biomass yields

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The stoichiometric limit to the biomass yield (maximal assimilation of the carbon source) is determined by the amount of CO2 lost in anabolism and the amount of carbon source required for generation of NADPH. This stoichiometric limit may be reached when yeasts utilize formate as an additional energy source. Factors affecting the biomass yield on single substrates are discussed under the following headings:

  • - Energy requirement for biomass formation (YATP). YATP depends strongly on the nature of the carbon source.

  • - Cell composition. The macroscopic composition of the biomass, and in particular the protein content, has a considerable effect on the ATP requirement for biomass formation. Hence, determination of for instance the protein content of biomass is rolevant in studies on bioenergetics.

  • - Transport of the carbon source. Active (i.e. energy-requiring) transport, which occurs for a number of sugars and polyols, may contribute significantly to the calculated theoretical ATP requirement for biomass formation.

  • - P/O-ratio. The efficiency of mitochondrial energy generation has a strong effect on the cell yield. The P/O-ratio is determined to a major extent by the number of proton-translocating sites in the mitochondrial respiratory chain.

  • - Maintenance and environmental factors. Factors such as osmotic stress, heavy metals, oxygen and carbon dioxide pressures, temperature and pH affect the yield of yeasts. Various mechanisms may be involved, often affecting the maintenance energy requirement.

  • - Metabolites such as ethanol and weak acids. Ethanol increases the permeability of the plasma membrane, whereas weak acids can act as proton conductors.

  • - Energy content of the growth substrate. It has often been attempted in the literature to predict the biomass yield by correlating the energy content of the carbon source (represented by the degree of reduction) to the biomass yield or the percentage assimilation of the carbon source. An analysis of biomass yields of Candida utilis on a large number of carbon sources indicates that the biomass yield is mainly determined by the biochemical pathways leading to biomass formation, rather than by the energy content of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander B, Leach S & Ingledew JW (1987) The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. J. Gen. Microbiol. 133: 1171–1179

    Google Scholar 

  • Alexander MA & Jeffries TW (1990) Respiratory efficiency and metabolite partitioning as regulatory phenomena in yeasts. Enzyme Microb. Technol. 12: 2–19

    Google Scholar 

  • Andreasen AA & Stier TJB (1953) Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J. Cell. Comp. Physiol. 41: 23–26

    Google Scholar 

  • (1954) Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J. Cell. Comp. Physiol. 43: 271–281

    Google Scholar 

  • Asano A, Imai K & Sato R (1967) Oxidative phosphorylation in Micrococcus denitrificans. II. The properties of pyridine nucleotide transhydrogenase. Biochim. Biophys. Acta 143: 477–486

    Google Scholar 

  • Atkinson B & Mavituna F (1983) Biochemical Engineering and Biotechnology Handbook (pp 120–125). The Nature Press, New York

    Google Scholar 

  • Babel W, Müller RH & Markuske KD (1983) Improvement of growth yield on glucose to the maximum by using an additional energy source. Arch. Mcrobiol. 136: 203–208

    Google Scholar 

  • Baranowski K & Radler F (1984) The glucose dependent transport of L-malate in Zygosacchromyces bailii. A. v. Leeuwenhoek 50, 329–340

    Google Scholar 

  • Bauchop T & Elsden SR (1960) The growth of micro-organisms in relation to their energy supply. J. Gen. Microbiol. 23: 457–469

    Google Scholar 

  • Beudeker RF, van Dam HW, van der Plaat JB & Vellenga K (1990) Developments in baker's yeast production. In: Verachtert H & de Mot R (Eds) Yeast biotechnology and Biocatalysis (pp 103–145). Marcel Dekker Inc., New York & Basel

    Google Scholar 

  • Birou B, Marison IW & Von Stockar U (1987) Calorimetric investigation of aerobic fermentations. Biotechnol. Bioeng. 30: 650–660

    Google Scholar 

  • Boveris A (1978). Production of superoxide anion and hydrogen peroxide in yeast mitochondria. In: Bacila M, Horecker BL & Stoppani AOM (Eds) Biochemistry and Genetics of Yeasts: Pure and Applied Aspects (pp 65–80). Academic Press, New York, San Francisco and London

    Google Scholar 

  • Brown CM & Rose AH (1969) Effects of temperature on composition and cell volume of Candida utilis. J. Bacteriol. 97: 262–272

    Google Scholar 

  • Bruinenberg PM, van Dijken JP & Scheffers WA (1983a) An enzymic analysis of NADPH production and consumption in Candida utilis. J. Gen. Microbiol. 129: 965–971

    Google Scholar 

  • (1983b) A theoretical analysis of NADPH production and consumption in yeasts. J. Gen. Microbiol. 129: 953–964

    Google Scholar 

  • Bruinenberg PM, Jonker R, van Dijken JP & Scheffers WA (1985) Utilization of formate as an additional energy source by glucose-limited chemostat cultures of Candida utilis CBS 621 and Saccharomyces cerevisiae CBS 8066. Evidence for the absence of transhydrogenase activity in yeasts. Arch. Microbiol. 142: 302–306

    Google Scholar 

  • Bruinenberg PM, Waslander GW, van Dijken JP & Scheffers WA (1986) A comparative radiorespirometric study of glucose metabolism in yeasts. Yeast 2: 117–121

    Google Scholar 

  • Cadenas E, Brigelius R, Akerboom Th & Sies H (1983) Oxygen radicals and hydroperoxides in mammalian organs: aspects of redox cycling and hydrogen peroxide metabolism. In: Sund H & Ullrich V (Eds) Biological Oxidations (pp 288–310). Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Carr RJG, Bilton RF & Atkinson T (1986) Toxicity of paraquat to microorganisms. Appl. Env. Microbiol. 52: 1112–1116

    Google Scholar 

  • Cartwright CP, Juroszek JR, Beavan MJ, Ruby FMS, Morais SMF & Rose AH (1986) Ethanol dissipates the proton-motive force across the plasma membrane of Saccharomyces cerevisiae. J. Gen. Microbiol. 132: 369–377

    Google Scholar 

  • Cartwright CP, Veazey FJ & Roase AH (1987) Effect of ethanol on activity of the plasma membrane ATPase in, and accumulation of glycine by, Saccharomyces cerevisiae. Appl. Environ. Microbiol. 53: 509–513

    Google Scholar 

  • Cason DT, Spencer Martins I & van Uden N (1986) Transport of fructose by a proton symport in a brewing yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 36: 307–310

    Google Scholar 

  • Cassio F, Leao C & van Uden N (1986) Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae. Appl. Env. Microbiol. 53: 509–513

    Google Scholar 

  • Chang EC & Kosman DJ (1989) Intracellular Mn(II)-associated superoxide scavenging activity protects Cu,Zn superoxide dismutase deficient Saccharomyces cerevisiae against dioxygen stress. J. Biol. Chem. 264: 12172–12178

    Google Scholar 

  • Chen SL & Gutmanis F (1976) Carbon dioxide inhibition of yeast growth in biomass production. Biotechnol. Bioeng. 18: 1455–1462

    Google Scholar 

  • Cooper TG (1982) Transport in Saccharomyces cerevisiae. In: Strathern JN, Jones EW & Broach JR (Eds) The Molecular Biology of the Yeast Saccharomyces. Metabolism and Gene Expression (pp 400–461). Cold Spring Harbor Lab., New York

    Google Scholar 

  • D'Amore T & Stewart GG (1987) Ethanol tolerance of yeast. Enzyme Microb. Technol. 9: 322–330

    Google Scholar 

  • Dasari G, Worth MA, Connor MA & Pamment NB (1990) Reasons for the apparent difference in the effects of produced and added ethanol on culture viability during rapid fermentations by Saccharomyces cerevisiae. Biotechnol. Bioeng. 35: 109–122

    Google Scholar 

  • Dekkers JGJ, de Kok HE & Roels JA (1981) Energetics of Sacchromyces cerevisiae CBS 426: comparison of anaerobic and aerobic glucose limitation. Biotechnol. Bioeng. 23: 1023–1035

    Google Scholar 

  • De Vries S & Marres CAM (1987) The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochim. Biophys. Acta 895: 205–239

    Google Scholar 

  • Eddy AA & Hopkins PG (1985) The putative electrogenic nitrate-protonsymport of the yeast Candida utilis. Comparison with the systems absorbing glucose or lactate. Biochem. J. 231: 291–297

    Google Scholar 

  • Egli T. (1980) Wachstum von Methanol assimilierenden Hefen. Diss. ETH Nr.6538, Zürich, Switzerland

  • Egli T & Quayle JR (1986) Influence of the carbon-nitrogen ratio of the growth mdium on the cellular composition and the ability of the methylotrophic yeast Hansenula polymorpha to utilize mixed carbon sources. J. Gen. Microbiol. 132: 1779–1788

    Google Scholar 

  • Eraso P & Gancedo C (1987) Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS 224: 187–192

    Google Scholar 

  • Eroshin VK, Utkin IS, Ladynichev SA, Samoylov VV, Kuvshinnikov VD & Skryabin GK (1976) Influence of pH and temperature on the substrate yield coefficient of yeast growth in a chemostat. Biotechnol. Bioeng. 18: 289–295

    Google Scholar 

  • Essia Ngang JJ, Letourneau F & Villa P (1989) Alcoholic fermentation of beet molasses: effects of lactic acid on yeast fermentation parameters. Appl. Microbiol. Biotechnol. 31: 125–128

    Google Scholar 

  • Favre E, Pugeaud P, Raboud JP & Peringer P (1989) Automated HPLC monitoring of broth components on bioreactors. J. Auto. Chem. 11: 280–283

    Google Scholar 

  • Fiechter A, Käppeli O & Meussdoerffer F (1989) Batch and continuous cultures. In: Rose AH & Harrison JS (Eds) The Yeasts, Vol 2 (pp 99–129). Academic Press, London

    Google Scholar 

  • Fründ C, Priefert H, Steinbüchel A & Schlegel H (1989) Biochemical and genetical analysis of acetoin catabolism in Alcaligenes eutrophus. J. Bacteriol. 171: 6539–6548

    Google Scholar 

  • Gancedo C, Gancedo JM & Sols A (1968) Glycerol metabolism in yeasts. Pathways of utilization and production. Eur. J. Biochem. 5: 165–172

    Google Scholar 

  • Goffeau A & Crosby B (1978) A new type of cyanide-insensitive, azide-sensitive respiration in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae. In: Bacile M, Horecker BL & Stoppani AOM (Eds) Biochemistry and Genetics of Yeasts (pp 81–96). Academic Press, New York

    Google Scholar 

  • Goldberg I (1985) Single cell protein (p 79). Springer Verlag, Berlin Heidelberg

    Google Scholar 

  • Gomez A & Castillo FJ (1983) Production of biomass and β-D-galactosidase by Candida pseudotropicalis grown in continuous culture on whey. Biotechnol. Bioeng. 25: 1341–1357

    Google Scholar 

  • Gommers PJF, van Schie BJ, van Dijken JP & Kuenen JG (1988) Biochemical limits to microbial growth yields: An analysis of mixed substrate utilization. Biotechnol. Bioeng. 32: 86–94

    Google Scholar 

  • Gunsalus IC & Shuster CW (1961) Energy-yielding metabolism in bacteria. In: Gunsalus IC and Stanier RY (Eds) The Bacteria, Vol 2 (pp 1–58). Academic Press, New York and London

    Google Scholar 

  • Harder W & Veldkamp H (1967) A continous culture of an obligately psychrophilic Pseudomonas species. Archiv für Mikrobiologie 59: 123–130

    Google Scholar 

  • Harder W & van Dijken JP (1976) Theoretical culculations on the realtion between energy production and growth of methane-utilizing bacteria. In: Microbial Production and Utilization of Gases (pp 403–418). E. Goltze Verlag, Göttingen

    Google Scholar 

  • Heijnen JJ & Roels JA (1981) A macroscopic model describing yield and maintenance relationships in aerobic fermentation processes. Biotechnol. Bioeng. 23: 739–763

    Google Scholar 

  • Higgins CF, Cairney J, Stirling DA, Sutherland L & Booth IR (1987) Osmotic regulation of gene expression: ionic strength as an intracellular signal. Trends Biochem. Sci. 12: 339–344

    Google Scholar 

  • Höfer M & Misra PC (1978) Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Biochem. J. 172: 15–22

    Google Scholar 

  • Höfer M, Nicolay K & Robillard G (1985) The electrochemical H+ gradient in the yeast Rhodotorula glutinis. J. Bioenerg. Biomembr. 17: 175–182

    Google Scholar 

  • Ingram LO & Buttke T (1984) Effects of alcohol on microorganisms. Adv. Microbial Physiol. 25: 254–290

    Google Scholar 

  • Jay MJ (1978) In: Modern Food Microbiology (pp 163–165) D. van Nostrand Comp., New York, Cincinnati, Toronto, London, Melbourne

    Google Scholar 

  • Jones CW, Brice JM & Edwards C (1977) The effect of respiratory chain composition on the growth efficiencies of aerobic bacteria. Arch. Mikrobiol. 115: 85–93

    Google Scholar 

  • Jones RP & Greenfield PF (1982) Effect of carbon dioxide on yeast growth and fermentation. Enz. Microb. Technol. 4: 210–223

    Google Scholar 

  • (1984) A review of yeast ionic nutrition. Part I: growth and fermentation requirements. Process Biochem. 19: 48–60

    Google Scholar 

  • (1987) Ethanol and the fluidity of the yeast plasma membrane. Yeast 3: 223–232

    Google Scholar 

  • Jones RP & Gadd GM (1990) Ionic nutrition of yeast-physiological mechanisms involved and implications for biotechnology. Enzyme Microb. Technol. 12: 402–418

    Google Scholar 

  • Jovall P-A, Tunblad-Johansson I & Adler L (1990) 13C NMR analysis of production and accumulation of osmoregulatory metabolites in the salt-tolerant yeast Debaromyces hansenii. Arch. Microbiol. 154: 209–214

    Google Scholar 

  • Kotyk A & Alonso A (1985) Transport of ethanol in baker's yeast. Folia Microbiol. 30: 90–91

    Google Scholar 

  • Küenzi M (1970) Uber der Reservekohlenhydratstoffwechsel von Saccharomyces cerevisiae. Diss. Nr. 4544, ZÜrich, Switzerland

  • Lafon-Lafourcade S, Geneix C & Ribereau-Gayon P (1984) Inhibition of alcoholic fermentation of grape must by fatty acids produced by yeasts and their elimination by yeast ghosts. Appl. Env. Microbiol. 47: 1246–1249

    Google Scholar 

  • Lang JM & Cirillo VP (1987) Glucose uptake in a kinaseless Saccharomyces cerevisiae mutant. J. Bacteriol. 169: 2932–2937

    Google Scholar 

  • Larsson C & Gustafsson (1987) Glycerol production in relation to the ATP pool and heat production rate of the yeasts Debaromyces hansenii and Saccharomyces cerevisiae during salt stress. Arch. Microbiol. 147: 358–363

    Google Scholar 

  • Leao C & van Uden N (1984) Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 774: 43–48

    Google Scholar 

  • (1986) Transport of lactate and other short-chain monocarboxylates in the yeast Candida utilis. Appl. Microbiol. Biotechnol. 23: 389–393

    Google Scholar 

  • Lee FJ & Hassan HM (1987) Biosynthesis of superoxide dismutase and catalase in chemostat cultures of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 26: 531–536

    Google Scholar 

  • Linton JD & Stephenson RJ (1978) A preliminary study on the growth yields in relation to the carbon and energy content of various organic growth substrates. FEMS Microbiol. Lett. 3: 95–98

    Google Scholar 

  • Linton JD & Rye AJ (1989) The relationship between the energetic efficiency in different microorganisms and the rate and type of metabolite overproduced. J. Indust. Microbiol. 4: 85–96

    Google Scholar 

  • Lloyd D (1974) In: The mitochondria of microorganisms, pp 89–90. Academic Press, London

    Google Scholar 

  • Loureiro-Dias MC & Santos H (1990) Effects of ethanol on Saccharomyces cerevisiae as monitored by in vivo 31P and 13C nuclear magnetic resonance. Arch. Microbiol. 153: 384–391

    Google Scholar 

  • Lucas C, da Costa M & van Uden N (1990) Osmoregulatory active sodium-glycerol co-transport in the halotolerant yeast Debaromyces hansenii. Yeast 6: 187–191

    Google Scholar 

  • Lueck E (1980) In: Antimicrobial food additives (pp 210–217). Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Maiorella B, Blanch HW & Wilke CR (1983) By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol. Bioeng. 25: 103–121

    Google Scholar 

  • (1984) Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol. Bioeng. 26: 1155–1166

    Google Scholar 

  • Malpartida F & Serrano R (1981) Proton translocation catalyzed by the purified yeast plasma membrane ATPase reconstituted in liposomes. FEBS Lett. 131: 351–354

    Google Scholar 

  • McDonald IJ, Walker T & Johnson BF (1987) Effects of ethanol and acetate on glucose-limited chemostat cultures of Schizosaccharomyces pombe, a fission yeast. Can. J. Microbiol. 33: 598–601

    Google Scholar 

  • Meikle AJ, Reed RH & Gadd GM (1988) Osmotic adjustment and the accumulation of organic solutes in whole cells and protoplasts of Saccharomyces cerevisiae. J. Gen. Microbiol 134: 3049–3060

    Google Scholar 

  • Mishra P & Kaur S (1991) Lipids as modulators of ethanol tolerance in yeast. Appl. Microbiol. Biotechnol. 34: 697–702

    Google Scholar 

  • Müller RH, Markuske KD & Babel W (1985) Formate gradients as a means for detecting the maximum carbon conversion efficiency of heterotrophic substrates: correlation between formate utilization and biomass increase. Biotechnol. Bioeng. 27: 1599–1602

    Google Scholar 

  • Müller RH & Babel W (1988) Energy and reducing equivalent potential of C2-compounds for microbial growth. Acta Biotechnol. 8: 249–258

    Google Scholar 

  • Murphy MP & Brand MD (1988a) Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron tranpsort chain. Eur. J. Biochem. 173, 637–644

    Google Scholar 

  • (1988b) The stoichiometry of charge translocation by cytochrome oxidase and the cytochrome bc1 complex of mitochondria at high membrane potential. Eur. J. Biochem. 173: 645–651

    Google Scholar 

  • Neijssel OM & Tempest DW (1976) Bioenergetic aspects of aerobic growth of Klebsiella aerogenes NCTC 418 in carbon-limited and carbon-sufficient chemostat culture. Arch. Microbiol. 107: 215–221

    Google Scholar 

  • Nelson N & Taiz L (1989) The evolution of H+-ATPases. TIBS 14: 113–116

    Google Scholar 

  • Nohl H (1986) A novel superoxide radical generator in heart mitochondria. FEBS 214: 269–273

    Google Scholar 

  • Novak M, Strehaiano P, Moreno M & Goma G (1981) Alcoholic fermentation: on the inhibitory effect of ethanol. Biotechnol. Bioeng. 23: 201–211

    Google Scholar 

  • Novak B & Mitchison JM (1990) Changes in the rate of oxygen consumption in synchronous cultures of the fission yeast Schizosaccharomyces pombe. J. Cell Science 96: 429–433

    Google Scholar 

  • Ohnishi T (1973) Mechanism of electron transport and energy conservation in hte site I region of the respiratory chain. Biochim. Biophys. Acta 301: 105–128

    Google Scholar 

  • Okolo B, Johnston JR & Berry DR (1987) Toxicity of ethanol, n-butanol and iso-amyl alcohol in Saccharomyces cerevisiae when supplied separately and in mixtures. Biotechnol. Lett. 9: 431–434

    Google Scholar 

  • Onken U & Liefke E (1989) Effect of total and partial pressure (oxygen and carbon dioxide) on aerobic microbial processes. Adv. Biochem. Eng/Biotechnol. 40: 137–169

    Google Scholar 

  • Ouhabi R, Rigoulet M & Guerin B (1989) Flux-yield dependence of oxidative phosphorylation at constant ΔμH+. FEBS Lett. 254: 199–202

    Google Scholar 

  • Oura E (1972) Reactions leading to the formation of yeast cell material from glucose and ethanol. Alkon Keskuslaboratorio report 8078. Helsinki, Finland

  • Osothsilp C & Subden RE (1986) Malate transport in Schizosaccharomyces pombe. J. Bacteriol. 168: 1439–1443

    Google Scholar 

  • Paca J & Gregr V (1979) Effect of pO2 on growth and physiological characteristics of C. utilis in a multistage tower fermentor. Biotechnol. Bioeng. 21: 1827–1843

    Google Scholar 

  • Pampulha ME & Loureiro V (1989) Interaction of the effects of acetic acid and ethanol on inhibition of fermentation in Saccharomyces cerevisiae. Biotechnol. Lett. 11: 269

    Google Scholar 

  • Pampulha ME & Loureiro-Dias MC (1990) Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl. Microbiol. Biotechnol. 34: 375–380

    Google Scholar 

  • Parada G & Acevedo F (1983) On the relation of temperature and RNA content to the specific growth rate in Saccharomyces cerevisiae. Biotechnol. Bioeng. 25: 2785–2788

    Google Scholar 

  • Parulekar SJ, Semones GB, Rolf MJ, Lievense JC & Lim HC (1986) Induction and elimination of oscillations in continuous cultures of Saccharomyces cerevisiae. Biotech. Bioeng. 28: 700–710

    Google Scholar 

  • Pascual C, Alonso A, Garcia I, Romay C & Kotyk A (1988) Effect of ethanol on glucose transport, key glycolytic enzymes, and proton extrusion in Saccharomyces cerevisiae. Biotechnol. Bioeng. 32: 374–378

    Google Scholar 

  • Payne WJ (1970) Energy yields and growth of heterotrophs. Annu. Rev. Microbiol. 42: 17–52

    Google Scholar 

  • Peinado JM, Cameira-dos-Santos PJ & Loureiro-Dias MC (1989) Regulation of glucose transport in Candida utilis. J. Gen. Microbiol. 135: 195–201

    Google Scholar 

  • Perlin DS, San Francisco MJD, Slayman CW & Rosen BP (1986) H+/ATP stoichiometry of proton pumps from Neurospora crassa and Escherichia coli. Arch. Biochem. Biophys. 248: 53–61

    Google Scholar 

  • Petrov VV & Okarokov LA (1990) Increase of the anion and proton permeability of S. carlbergensis plasmalemma by nalcohols as a possible cause of its de-energetization. Yeast 6: 311–318

    Google Scholar 

  • Pinto I, Cardoso H, Leao C & van Uden N (1989) High enthalpy and low enthalpy death in Saccharomyces cerevisiae induced by acetic acid. Biotechnol. Bioeng. 33: 1350–1352

    Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proceedings of the Royal Society of London 163B: 224–231

    Google Scholar 

  • Pons M-N, Rajab A & Engasser J-M (1986) Influence of acetate on growth kinetics and production control of Saccharomyces cerevisiae on glucose and ethanol. Appl. Microbiol. Biotechnol. 24: 193–198

    Google Scholar 

  • Postma E, Scheffers WA & van Dijken JP (1988) Adaptation of the kinetics of glucose transport to environmental conditions in the yeast Candida utilis CBS 621: a continuous culture study. J. Gen. Microbiol. 134: 1109–1116

    Google Scholar 

  • (1989) Kinetics of growth and glucose transport in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Yeast 5: 159–165

    Google Scholar 

  • Reed RH, Chudek JA, Foster R & Gould CM (1987) Osmotic significance of glycerol accumulation in exponential growing yeasts. Appl. Env. Microbiol. 53: 2119–2123

    Google Scholar 

  • Roels JA (1981) Application of macroscopic principles to microbial metabolism. Biotechnol. Bioeng. 22: 2457–2514

    Google Scholar 

  • Romano AH (1982) Facilitated diffusion of 6-deoxy-D-glucose in bakers' yeast: evidence against phosphorylation-associated transport of glucose. J. Bacteriol. 152: 1295–1297

    Google Scholar 

  • Romano AH (1986) Sugar transport systems of baker's yeast and filamentous fungi. In: Morgan MM (Ed) Carbohydrate Metabolism in cultured cells (pp 225–244). Plenum Publishing Corp

  • Rosa MF, Sá-Correia I & Novais J (1988) Improvement in ethanol tolerance of Kluyveromyces fragilis in jerusalem artichoke juice. Biotech. Bioeng. 31: 705–710

    Google Scholar 

  • Rosa MF & Sá-Correia I (1991) In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Appl. Env. Microbiol. 57: 830–835

    Google Scholar 

  • Rouwenhorst RJ, Visser LE, van der Baan AA, Scheffers WA & van Dijken JP (1988) Production, distribution and kinetic properties of Kluyvermyces marxianus CBS 6556. Appl. Env. Microbiol. 54: 1131–1137

    Google Scholar 

  • Rouwenhorst RJ, van der Baan AA, Scheffers WA & van Dijken JP (1991) Production and localization of β-fructosidase in asynchronous and synchronous chemostat cultures of yeasts. Appl. Env. Microbiol. 57: 557–562

    Google Scholar 

  • Rutgers M, Teixeira de Mattos MJ, Postma PW & van Dam K (1987) Establishment of the steady state in glucose-limited chemostat cultures of Klebsiella pneumonae. J. Gen. Microbiol. 133: 445–451

    Google Scholar 

  • Rydström J, Texeira da Cruz A & Ernster L (1970) Factors governing the kinetics and steady state of the mitochondrial nicotinamide nucelotide transhydrogenase system. Eur. J. Biochem. 17: 56–62

    Google Scholar 

  • Sá-Correia I & van Uden N (1983) Temperature profiles of ethanol tolerance: effects of ethanol on the minimum and maximum temperatures for growth of the yeast Saccharomyces cerevisiae and Kluyveromyces fragilis. Biotechnol. Bioeng. 25: 1665–1667

    Google Scholar 

  • Sá-Correia I (1986) Synergistic effect of ethanol, octanoic and decanoic acid on the kinetics and activation parameters of thermal death in Saccharomyces bayanus. Biotechnol. Bioeng. 28: 761–763

    Google Scholar 

  • Salgueiro SP, Sá-Correia I & Novais M (1988) Ethanol-induced leakage in Saccharomyces cerevisiae: kinetics and relationship to yeast ethanol tolerance and alcohol fermentation productivity. Appl. Environ. Microbiol. 54: 903–909

    Google Scholar 

  • Salmon JM (1987) L-Malic acid permeation in resting cells of anaerobically grown Saccharomyces cerevisiae. Biochim. Biophys. Acta 901: 30–34

    Google Scholar 

  • Serrano R (1977) Energy requirements for maltose transport in yeast. Eur. J. Biochem. 80: 97–102

    Google Scholar 

  • (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochem. Biophys. Acta 947: 1–28

    Google Scholar 

  • Shul'govskaya EM, Pozmogova & Rabotnova (1988) Growth of a culture of Candida utilis in the chemostat on a balanced medium. Microbiology 56: 496–499

    Google Scholar 

  • Stanier RY, Ingraham JL, Wheelis ML & Painter PR (1987) Effect of the environment on microbial growth. In: General Microbiology (pp 207). Macmillan Education Ltd., London

    Google Scholar 

  • Steinbüchel A, Frund C, Jendrossek D & Schlegel H (1987) Isolation of mutants of Alcaligenes eutrophus unable to derepress the fermentative alcohol dehydrogenase. Arch. Microbiol. 148: 178–186

    Google Scholar 

  • Stouthamer AH (1973) A theoretical study on the amount of ATP required for synthesis of microbial cell material. A. v. Leeuwenhoek 39: 545–565

    Google Scholar 

  • Stouthamer AH & Bettenhaussen CW (1973) Utilization of energy for growth and maintenance in continuous and batch culture of microorganisms. Biochim. Biophys. Acta 301: 53–70

    Google Scholar 

  • Stouthamer AH & van Verseveld HW (1987) Microbial energetics should be considered in manipulating metabolism for biotechnological purposes. Trends in Biotechnol. 40–46

  • Taylor GT & Kirsop BH (1977) The origin of medium chain length fatty acids present in beer. J. Inst. Brew. 83: 241–243

    Google Scholar 

  • Tempest DW & Neijssel OM (1984) The status of YATP and energy as biologically interpretable phenomena. Annual Rev. Microbiol. 38: 459–486

    Google Scholar 

  • Vallejo CG & Serrano R (1989) Physiology of mutants with reduced expression of plasma membrane H+-ATPase. Yeast 5: 307–319

    Google Scholar 

  • Van Dijken JP & Harder W (1975) Growth yields of microorganisms on methanol and methane. A theoretical study. Biotechnol. Bioeng. 17: 15–30

    Google Scholar 

  • Van Dijken JP, Otto R & Harder W (1976) Growth of Hansenula polymorpha in a methanol-limited chemostat. Arch. Microbiol. 111: 137–144

    Google Scholar 

  • Van Dijken JP & Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Rev. 32: 199–224

    Google Scholar 

  • Van Uden N & Madeiro-Lopes (1976) Yield and maintenance relation of yeast growth in the chemostat at superoptimal temperatures. Biotechnol. Bioeng. 18: 791–804

    Google Scholar 

  • Van Uden N (1984) Temperature profiles of yeasts. Adv. Microbial Physiol. 25: 195–251

    Google Scholar 

  • Van Uden N (1989) Effects of alcohols on membrane transport in yeasts. In: Alcohol Toxicity in Yeasts and Bacteria (pp 135–146). CRC Press Inc, Boca Raton

    Google Scholar 

  • Van Urk H, Postma E, Scheffers WA & van Dijken JP (1989) Glucose transport in Crabtree-positive and Crabtree-negative yeasts. J. Gen. Microbiol. 135: 2399–2406

    Google Scholar 

  • Van Urk H, Voll WSL, Scheffers WA & van Dijken JP (1990) A transition state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl. Env. Microbiol. 56: 281–287

    Google Scholar 

  • Van Zyl PJ, Kilian SG & Prior BA (1990) The role of an active transport mechanism in glycerol accumulation during osmoregulation by Zygosaccharomyces rouxii. Appl. Microbiol. Biotechnol. 34: 231–235

    Google Scholar 

  • Veenhuis M, van Dijken JP & Harder W (1983) The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv. Microb. Physiol. 24: 1–82

    Google Scholar 

  • Veenhuis M, Mateblowski M, Kunau WH & Harder W (1987) Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3: 77–84

    Google Scholar 

  • Verduyn C, Giuseppin MLF, Scheffers WA & van Dijken JP (1988a) Hydrogen peroxide metabolism in yeasts. Appl. Env. Microbiol. 54: 2086–2090

    Google Scholar 

  • Verduyn C, Breedveld GJ, Scheffers WA & van Dijken JP (1988b). Purification and properties of dihydroxyacetone reductase and 2,3-butanediol dehydrogenase from Candida utilis CBS 621. Yeast 4: 127–133

    Google Scholar 

  • (1988c). Metabolism of 2,3-butanediol in yeasts. Yeast 4: 135–142

    Google Scholar 

  • Verduyn C, Postma E, Scheffers WA & van Dijken JP (1990a) Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 136: 405–412

    Google Scholar 

  • (1990b) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 136: 395–403

    Google Scholar 

  • Verduyn C, Stouthamer AH, Scheffers WA & van Dijken JP (1991a) A theoretical evaluation of growth yields of yeasts. A. v. Leeuwenhoek 59: 49–63

    Google Scholar 

  • Verduyn C, van Wijngaarden CJ, Scheffers WA & van Dijken JP (1991b) Hydrogen peroxide as an electron acceptor for mitochondrial respiration in the yeast Hansenula polymorpha. Yeast 7: 137–146

    Google Scholar 

  • Verduyn C (1992) Energetic aspects of metabolic fluxes in yeasts. PhD. thesis, Delft, The Netherlands

  • Viegas CA, Sá-Correia I & Novais JM (1985) Synergistic inhibition of the growth of Saccharomyces bayanus by ethanol and octanoic and decanoic acids. Biotechnol. Lett. 7: 611–614

    Google Scholar 

  • Viegas CA, Rosa MF, Sá-Correia I & Novais JM (1989) Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation. Appl. Env. Microbiol. 55: 21–28

    Google Scholar 

  • Viegas CA & Sá-Correia I (1991) Activation of the plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J. Gen. Microbiol. 137: 645–651

    Google Scholar 

  • Von Jagow G & Klingenberg M (1970) Pathways of hydrogen in mitochondria of Saccharomyces carlbergensis. Eur. J. Biochem. 12: 583–592

    Google Scholar 

  • Von Stockar U & Marison IW (1989) The use of calorimetry in biotechnology. Adv. Biochem. Eng./Biotechnol. 40: 93–136

    Google Scholar 

  • Vreeland RH (1987) Mechanisms of halotolerance in microorganisms. CRC Critical Reviews in Microbiology 14: 311–356

    Google Scholar 

  • Walkercaprioglio HM, Casey WM & Parks LW (1990) Saccharomyces cerevisiae membrane sterol modifications in response to growth in the presence of ethanol. Appl. Env. Microbiol. 56: 2853–2857

    Google Scholar 

  • Wallace RJ & Holms WH (1986) Maintenance coefficient and rates of turnover of cell material in Escherichia coli ML308 at different growth temperatures. FEMS Microbiol. Lett. 37: 317–320

    Google Scholar 

  • Warth AD (1988) Effect of benzoic acid on growth yield of yeasts differing in their resistance to preservatives. Appl. Env. Microbiol. 54: 2091–2095

    Google Scholar 

  • (1989) Transport of benzoic and propanoic acids by Zygosaccharomyces bailii. J. Gen. Microbiol. 135: 1383–1390

    Google Scholar 

  • Watson TG (1970) Effects of sodium chloride on steady-state growth and metabolism of Saccharomyces cerevisiae. J. Gen. Microbiol. 64: 91–99

    Google Scholar 

  • Whitworth DA & Ratledge C (1977) Phosphoketolase in Rhodotorula glutinis and other yeasts. J. Gen. Microbiol. 102: 397–401

    Google Scholar 

  • Winter JF, Loret MO & Uribelarrea JL (1989) Inhibition and growth factor deficiencies in alcoholic fermentation by Saccharomyces cerevisiae. Current Microbiol. 18: 247–252

    Google Scholar 

  • Zwart KB, Overmars EH & Harder W (1983) The role of peroxisomes in the metabolism of D-alanine in the yeast Candida utilis. FEMS Microbiol. Lett. 19: 225–231

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verduyn, C. Physiology of yeasts in relation to biomass yields. Antonie van Leeuwenhoek 60, 325–353 (1991). https://doi.org/10.1007/BF00430373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00430373

Key words

Navigation