Skip to main content
Log in

Allozyme variation in Anopheles stephensi Liston from Pakistan (Diptera: Culicidae)

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Allozyme variability was analyzed at 16 loci in 11 lines of Anopheles stephensi Liston from Pakistan. Six lines were considered as samples from natural populations. For these lines the mean number of alleles was 1.31–1.63, the degree of polymorphism was 0.188–0.375, the observed heterozygosity was 0.065–0.086, and the genetic distance ranged from 0.001 to 0.016. No population-specific alleles were found. Interbreeding was considerable (mean F it=0.183). Differences in allele frequencies were due primarily to local inbreeding (F is>F st at most loci). The Lahore line, reared for more than 20 generations, had more homozygotes than the other lines. A line refractory to Plasmodium falciparum and a genetic sexing line exhibited decreased allozyme variability. The latter line showed reduced staining intensity at 10 loci. Linkage studies are recommended for the following loci with rare alleles: Acp, Gapdh, Icd-1, Icd-2, Mpi, and Pgd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asman, S. M., McDonald, P. T., and Prout, T. (1981). Field studies of genetic control systems for mosquitoes. Annu. Rev. Entomol. 26289.

    Google Scholar 

  • Ayala, F. J., Powell, J. R., Tracey, M. L., Mourão, C. A., and Pérez-Salas, S. (1972). Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics 70113.

    Google Scholar 

  • Baker, R. H. (1984). Chromosome rearrangements in the control of mosquitoes. Prevent. Vet. Med. 2529.

    Google Scholar 

  • Black, W. C., and Krafsur, E. S. (1985). A FORTRAN program for analysis of genotypic frequencies and description of the breeding structure of populations. Theor. Appl. Genet. 70484.

    Google Scholar 

  • Bullini, L., and Coluzzi, M. (1973). Electrophoretic studies on gene-enzyme systems in mosquitoes (Diptera, Culicidae). Parassitologia 15221.

    Google Scholar 

  • Bullini, L., and Coluzzi, M. (1978). Applied and theoretical significance of electrophoretic studies in mosquitoes (Diptera: Culicidae). Parassitologia 207.

    Google Scholar 

  • Cianchi, R., Urbanelli, S., Villani, F., Sabatini, A., and Bullini, L. (1985). Electrophoretic studies in mosquitoes: Recent advances. Parassitologia 27157.

    Google Scholar 

  • Curtis, C. F., Brooks, G. D., Ansari, M. A., Grover, K. K., Krishnamurthy, B. S., Rajagopalan, P. K., Sharma, L. S., Sharma, V. P., Singh, D., Singh, K. R. P., and Yasuno, M. (1982). A field trial on control of Culex quinquefasciatus by release of males of a strain integrating cytoplasmic incompatibility and a translocation. Entomol. Exp. Appl. 31181.

    Google Scholar 

  • Feldmann, A. M., and Ponnudurai, T. (1988). Selection of Anopheles stephensi Liston for refractoriness and susceptibility to Plasmodium falciparum. Vet. Med. Entomol. (in press).

  • Graves, P. M., and Curtis, C. F. (1982). A cage replacement experiment involving introduction of genes for refractoriness to Plasmodium yoelii nigeriensis into a population of Anopheles gambiae (Diptera: Culicidae). J. Med. Entomol. 19127.

    Google Scholar 

  • Harris, H., and Hopkinson, D. A. (1976). Handbook of Enzyme Electrophoresis in Human Genetics North-Holland, Amsterdam.

    Google Scholar 

  • Herrera, R. J., and Mukherjee, A. B. (1982). Electrophoretic characterization and comparison of dehydrogenases from eight permanent insect cell lines. Comp. Biochem. Physiol. 72359.

    Google Scholar 

  • Iqbal, M. P., Tahir, M. K., Sakai, R. K., and Baker, R. H. (1973). Linkage groups and recombination in the malaria mosquito. J. Hered. 64133.

    Google Scholar 

  • Lorimer, N. (1981). Long-term survival of introduced genes in a natural population of Aedes aegypti (L.) (Diptera: Culicidae). Bull. Entomol. Res. 71129.

    Google Scholar 

  • Matthews, T. C., and Craig, G. B. (1980). Genetic heterozygosity in natural populations of the tree-hole mosquito Aedes triseriatus. Ann. Entomol. Soc. Am. 73739.

    Google Scholar 

  • Matthews, T. C., and Münstermann, L. E. (1983). Genetic diversity and differentiation in northern populations of the tree-hole mosquito Aedes hendersoni (Diptera: Culicidae). Ann. Entomol. Soc. Am. 761005.

    Google Scholar 

  • Menken, S. B. J. (1982). Biochemical genetics and systematics of small ermine moths (Lepidoptera, Yponomeutidae). Z. zool. Syst. Evolut.-forsch. 20131.

    Google Scholar 

  • Miles, S. J. (1978). Enzyme variation in the Anopheles gambiae Giles group of species (Diptera: Culicidae). Bull. Entomol. Res. 6885.

    Google Scholar 

  • Nei, M. (1977). F-statistics and analysis of gene diversity in subdivided populations. Ann. Human Genet. 41225.

    Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89583.

    Google Scholar 

  • Parvez, S. D., Akhtar, K., and Sakai, R. K. (1985). Two new mutations and a linkage map of Anopheles stephensi. J. Hered. 76205.

    Google Scholar 

  • Reisen, W. K. (1986). Population dynamics of some Pakistan mosquitoes: The impact of residual organophosphate insecticide spray on anopheline relative abundance. Ann. Trop. Med. Parasitol. 8069.

    Google Scholar 

  • Robinson, A. S. (1986). Genetic sexing in Anopheles stephensi using dieldrin resistance. J. Am. Mosq. Control Assoc. 293.

    Google Scholar 

  • Robinson, A. S., and Lap, P. V. (1986). Cytological, linkage and insecticide studies on a genetic sexing line in Anopheles stephensi Liston. Heridity 58g5.

    Google Scholar 

  • Seawright, J. A. (1983). Chromosome aberrations for mosquito control. In Biocontrol of Mosquitoes, Am. Mosq. Control Assoc. Bull. 6.

  • Sokal, R. R., and Rohlf, F. J. (1969). Biometry W. H. Freeman, San Francisco.

    Google Scholar 

  • Steiner, W. W. M., and Joslyn, D. J. (1979). Electrophoretic techniques for the genetic study of mosquitoes. Mosq. News 3935.

    Google Scholar 

  • Subbarao, S. K., Sharma, V. P., Vasantha, K., and Adak, T. (1984). Effect of malathion spraying on four anopheline species and the development of resistance in A. stephensi in Mandora, Haryana. Indian J. Malariol. 21109.

    Google Scholar 

  • Swofford, D. L., and Selander, R. B. (1981). BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72281.

    Google Scholar 

  • Tabachnick, W. J., and Powell, J. R. (1979). A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genet. Res. Cambr. 34215.

    Google Scholar 

  • Tabachnick, W. J., Münstermann, L. E., and Powell, J. R. (1979). Genetic distinctness of sympatric forms of Aedes aegypti in East Africa. Evolution 33287.

    Google Scholar 

  • Urbanelli, S., and Bullini, L. (1985). Electrophoretic studies on Culex quinquefasciatus Say from Africa: genetic variability and divergence from Culex pipiens. L. (Diptera: Culicidae). Bull. Entomol. Res. 75291.

    Google Scholar 

  • van der Kaay, H. J., Laarman, J. J., Curtis, C. F., Boorsma, E. G., and van Seventer, H. A. (1982). Susceptibility to Plasmodium berghei in a laboratory strain of Anopheles atroparvus (Diptera: Culicidae) after introduction of Plasmodium-refractory genotypes. J. Med. Entomol. 19536.

    Google Scholar 

  • Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 381358.

    Google Scholar 

  • WHO (1982). Manual on Environmental Management for Mosquito Control. Annex 1. Basic Information on Mosquito Vectors and Diseases World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • Wright, S. (1978). Evolution and the Genetics of Populations, Vol. 4. Variability Within and Among Natural Populations University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was financially supported in part by the Dutch Ministries of Agriculture & Fisheries, Developmental Aid, and Science Policy. It is part of the collaborative program INAL between the Research Institute ITAL, Wageningen, and the Departments of Parasitology of the Universities of Nijmegen, Amsterdam, and Leiden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Driel, J.W., Sluiters, J.F. & van der Kaay, H.J. Allozyme variation in Anopheles stephensi Liston from Pakistan (Diptera: Culicidae). Biochem Genet 25, 789–802 (1987). https://doi.org/10.1007/BF00502599

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502599

Key words

Navigation