Skip to main content
Log in

Biochemical and physiological studies of soluble esterases fromDrosophila melanogaster

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Twenty-two soluble esterases have been identified inD. melanogaster by combining the techniques of native polyacrylamide gel electrophoresis and isoelectric focusing. The sensitivity of each isozyme to three types of inhibitors (organophosphates, eserine sulfate, and sulfydryl reagents) identified 10 as carboxylesterases, 6 as cholinesterases, and 3 as acetylesterases. Three isozymes could not be classified and no arylesterases were identified. The carboxyl- and cholinesterases could each be further divided into two subclasses on the basis of inhibition by organophosphates and sulfhydryl reagents, respectively. Cholineand acetylesterases have characteristic substrate preferences but both subclasses of carboxylesterases are heterogeneous in substrate utilization. Subclass 2 carboxylesterases exhibit diverse temporal expression patterns, with subclass 1 carboxylesterases generally found in larvae and subclass 1 cholinesterases and acetylesterases more characteristic of pupae and adults. Tissues showing the greatest number of isozymes are larval body wall (eight) and digestive tract (six in larvae, six in adults). Carboxylesterases are distributed across a wide range of tissues, but subclass 1 cholinesterases are generally associated with neural or neurosecretory tissues and subclass 2 cholinesterases with digestive tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, S. (1976). Larval and adult housefly carboxylesterase: Isozymic composition and tissue pattern.Insect Biochem. 6541.

    Google Scholar 

  • Akam, M. E., Roberts, D. B., Richards, G. P., and Ashburner, M. (1978).Drosophila: the genetics of two major larval proteins.Cell 13215.

    Google Scholar 

  • Aldridge, W. N. (1953). Serum esterases. 1. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination.Biochemistry 53110.

    Google Scholar 

  • Arpagaus, M., Fournier, D., and Toutant, J. P. (1988). Analysis of acetylcholinesterase molecular forms during the development ofDrosophila melanogaster. Evidence for the existence of an amphiphilic monomer.Insect Biochem. 18539.

    Google Scholar 

  • Ashour, M. A., Harshman, L. G., and Hammock, B. D. (1987). Malathion toxicity and carboxylesterase activity inDrosophila melanogaster.Pestic. Biochem. Physiol. 2997.

    Google Scholar 

  • Augustinsson, K. B. (1968). The evolution of esterases in vertebrates. In Their, N. V., and Roche, J. (eds.),Homologous Enzymes and Biochemical Evolution Gordon and Breach, New York, p. 299.

    Google Scholar 

  • Beckman, L., and Johnson, F. M. (1964). Esterase variation inDrosophila melanogaster.Hereditas 51212.

    Google Scholar 

  • Brady, J. P., Richmond, R. C., and Oakeshott, J. G. (1990). Cloning of the esterase-5 locus fromDrosophila pseudoobscura and comparison with the homologous locus inD. melanogaster.Mol. Biol. Evol. 7525.

    Google Scholar 

  • Cavener, D., Otteson, D. C., and Kaufman, T. C. (1986). A rehabilitation of the genetic map of the 84B-D region ofDrosophila melanogaster.Genetics 114111.

    Google Scholar 

  • Chatonnet, A., and Lockridge, O. (1989). Comparison of butyrylcholinesterase and acetylcholinesterase.Biochem. J. 260625.

    Google Scholar 

  • Coates, P. M., Mestriner, M. A., and Hopkinson, D. A. (1975). A preliminary genetic interpretation of the esterase isozymes of human tissue.Ann. Hum. Genet. 391.

    Google Scholar 

  • Collet, C., Nielsen, K. M., Russell, R. J., Karl, M., Oakeshott, J. G., and Richmond, R. C. (1990). Molecular analysis of duplicated esterase genes inDrosophila melanogaster.Mol. Biol. Evol. 79.

    Google Scholar 

  • Cooke, P. H., Richmond, R. C., and Oakeshott, J. G. (1987). High resolution electrophoretic variation at the esterase-6 locus in a natural population ofDrosophila melanogaster.Heredity 59259.

    Google Scholar 

  • Dewhurst, S. A., McCaman, R. E., and Kaplan, W. P. (1970). The time course of development of acetylcholinesterase and choline acetyltransferase inDrosophila melanogaster.Biochem. Genet. 4499.

    Google Scholar 

  • Foster, G. G., Whitten, M. J., Konovalov, C., Arnold, J. T. A., and Maffi, G. (1981). Autosomal genetic maps of the Australian sheep blowfly,Lucilia cuprina dorsalis R.D. (Diptera: Calliphoridae), and possible correlations with the linkage maps ofMusca domestica L. andDrosophila melanogaster (Mg).Genet. Res. 3755.

    Google Scholar 

  • Hall, L., and Spierer, P. (1986). TheAce locus ofDrosophila melanogaster: Structural gene for acetylcholinesterase with an unusual 5′ leader.EMBO J. 52949.

    Google Scholar 

  • Hammock, B. D. (1985). Regulation of juvenile hormone titer: degradation. In Kerkut, G. A., and Gilbert, L. I. (eds.),Comprehensive Insect Physiology, Biochemistry and Pharmacology Pergamon Press, Oxford, Vol. 7, p. 431.

    Google Scholar 

  • Hammock, B. D., Abdel-Aal, Y. A. I., Mullin, C. A., Hanzlik, T. N., and Roe, R. M. (1984). Substituted thiotrifluoropropanones as potent selective inhibitors of juvenile hormone esterase.Pestic. Biochem. Physiol. 22209.

    Google Scholar 

  • Hanzlik, T. N., Abdel-Aal, Y. A. I., Harshman, L. G., and Hammock, B. D. (1989). Isolation and sequencing of cDNA clones coding for juvenile hormone esterase fromHeliothis virescens. J. Biol. Chem. 26412419.

    Google Scholar 

  • Hedrich, H. J., and von Deimling, O. (1987). Re-evaluation of LG V of the rat and assignment of 12 carboxylesterases to two gene clusters.J. Hered. 7892.

    Google Scholar 

  • Hedrich, H. J., von Deimling, O., and Kluge, R. (1987). Biochemical genetics ofEs-14 (formerly Es-Si) and a new esterase variation,Es-15, of the laboratory rat (Rattus norvegicus): Biochemistry, tissue expression and linkage toEs-1 in linkage group V.Biochem. Genet. 2579.

    Google Scholar 

  • Heymann, E. (1980). Carboxylesterase and amidases. In Jakoby, W. (ed.),Enzymatic Basis of Detoxication Academic Press, New York, Vol II, p. 291.

    Google Scholar 

  • Hughes, P. B., and Raftos, D. A. (1985). Genetics of an esterase associated with resistance to organophosphorus insecticides in the sheep blowfly,Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae).Bull. Entomol. Res. 75535.

    Google Scholar 

  • Kissel, J. A., Fontaine, R. N., Turck, C. W., Brockman, H. L., and Hui, D. Y. (1989). Molecular cloning and expression of cDNA for rat pancreatic cholesterol esterase.Biochim. Biophys. Acta 1006227.

    Google Scholar 

  • Krisch, K. (1971). Carboxylic ester hydrolases. In Boyer, P. D. (ed.),The Enzymes Academic Press, New York, p. 43.

    Google Scholar 

  • Mane, S. D., Tepper, C. S., and Richmond, R. C. (1983). Studies of esterase 6 inDrosophila melanogaster. XIII. Purification and characterisation of the two major isozymes.Biochem. Genet. 211019.

    Google Scholar 

  • Markwell, M. A., Haas, S. M., Bieber, L. L., and Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples.Anal. Biochem. 87206.

    Google Scholar 

  • Mitchell, H. K., and Mitchell, A. (1964). Mass culture and age selection inDrosophila.Dros. Info. Serv. 39135.

    Google Scholar 

  • Morton, R. A., and Singh, R. S. (1980). Variation inDrosophila acetylcholinesterase.Biochem. Genet. 18439.

    Google Scholar 

  • Myers, M., Richmond, R. C., and Oakeshott, J. G. (1988). On the origins of esterases.Mol. Biol. Evol. 5113.

    Google Scholar 

  • Oakeshott, J. G., Collet, C., Phillis, R. W., Nielsen, K. M., Russell, R. J. Chambers, G. K., Ross, V., and Richmond, R. C. (1987). Molecular cloning and characterisation of esterase-6, a serine hydrolase ofDrosophila.Proc. Natl. Acad. Sci. USA 843359.

    Google Scholar 

  • Oakeshott, J. G., Healy, M. J., and Game, A. Y. (1990). Regulatory evolution of β-carboxyl esterases inDrosophila. In Barker, J. S. F., Starmer, W. T., and MacIntyre, R. J. (eds.),Ecological and Evolutionary Genetics of Drosophila Plenum, New York, p. 359.

    Google Scholar 

  • O'Brien, S. J., and MacIntyre, R. J. (1978). Genetics and biochemistry of enzymes and specific proteins ofDrosophila. In Ashburner, M., and Wright, T. R. F. (eds.),The Genetics and Biology of Drosophila Academic Press, London, Vol. 2a, p. 395.

    Google Scholar 

  • Ogita, Z., and Kasai, T. (1965). Genetic control of multiple esterases inMusca domestica. Japan.J. Genet. 401.

    Google Scholar 

  • Olson, P. F., Fessler, L. I., Nelson, R. E., Sterne, R. E., Campbell, A. G., and Fessler, J. H. (1990). Glutactin, a novelDrosophila basement membrane-related glycoprotein with sequence similarity to serine esterases.EMBO J. 91219.

    Google Scholar 

  • Parker, A. G., Russell, R. J., Delves, A. C., and Oakeshott, J. G. (1991). Biochemistry and physiology of esterases in organophosphate suspectible and resistant strains of the Australian sheep blowfly,Lucilia cuprina. Pestic Biochem. Physiol. (in press).

  • Peters, J. (1982). Nonspecific esterases ofMus musculus.Biochem. Genet. 20585.

    Google Scholar 

  • Rauschenbach, I. Y., Lukashina, N. S., and Korochkin, L. I. (1984). The genetics of esterases inDrosophila. VIII. The gene regulating the activity of JH-esterase inD. virilis.Biochem. Genet. 2265.

    Google Scholar 

  • Richmond, R. C., Nielsen, K. M., Brady, J. P., and Snella, E. M. (1990). Physiology, biochemistry and molecular biology of theEst-6 locus inDrosophila melanogaster. In Barker, J. S. F., Starmer, W. T., and MacIntyre, R. J. (eds.),Ecological and Evolutionary Genetics of Drosophila Plenum, New York. p. 273.

    Google Scholar 

  • Russell, R. J., Dumancic, M. M., Foster, G. G., Weller, G. L., Healy, M. J., and Oakeshott, J. G. (1990). Insecticide resistance as a model system for studying molecular evolution. In Barker, J. S. F., Starmer, W. T., and MacIntyre, R. J. (eds.),Ecological and Evolutionary Genetics of Drosophila Plenum, New York, p. 293.

    Google Scholar 

  • Sheehan, K., Richmond, R. C., and Cochrane, B. J. (1979). Studies of esterase 6 inDrosophila melanogaster. III. The developmental pattern and tissue distribution.Insect Biochem. 9443.

    Google Scholar 

  • Small, D. H. (1990). Non-cholinergic actions of acetylcholinesterases: proteases regulating cell growth and development?TIBS 15213.

    Google Scholar 

  • van Zutphen, L. F. M., den Bieman, M. G. C., von Deimling, O., and Fox, R. R. (1987). Genetics of a tissue esterase polymorphism (Est-6) in the rabbit (Oryctolagus cuniculus).Biochem. Genet. 25335.

    Google Scholar 

  • Vernick, K. D., Collins, F. H., Seeley, D. C., Gwadz, R. W., and Miller, L. H. (1988). The genetics and expression of an esterase locus inAnopheles gambiae.Biochem. Genet. 26367.

    Google Scholar 

  • Vogt, R. G., and Riddiford, L. M. (1981). Pheromone binding and inactivation by moth antennae.Nature 293161.

    Google Scholar 

  • Vogt, R. G., and Riddiford, L. M. (1986). Scale esterase: A pheromone-degrading enzyme from scales of silk mothAntheraea polyphemus.J. Chem. Ecol. 12469.

    Google Scholar 

  • von Deimling, O. H. (1984). Esterase-23 (Es-23): Characterization of a new carboxylesterase isozyme (EC 3.1.1.1) of the house mouse, genetically linked toES-2 on chromosome 8.Biochem. Genet. 22769.

    Google Scholar 

  • von Deimling, O. H., Gaa, A., and Simon, G. G. (1988). Esterase-18 (ES-18) of the house mouse (Mus musculus): Biochemical characterization and genetics of an allozyme linked to chromosome 19.Biochem. Genet. 26617.

    Google Scholar 

  • Waterhouse, W. J. (1981). An esterase of bacterial origin inDrosophila montana.Biochem. Genet. 19227.

    Google Scholar 

  • Wright, T. R. F. (1963). The genetics of an esterase inDrosophila melanogaster.Genetics 48787.

    Google Scholar 

  • Zador, E., Gausz, J., and Maroy, P. (1986). Tissue-specific expression of the acetylcholinesterase gene inDrosophila melanogaster embryos.Mol. Gen. Genet. 204469.

    Google Scholar 

  • Zador, E., and Maroy, P. (1987). Subcellular localization of isozyme variants of acetylcholinesterase during the life cycle ofDrosophila melanogaster.Biochem. Genet. 25779.

    Google Scholar 

  • Ziegler, R., Whyard, S., Downe, A. E. R., Wyatt, G. R., and Walker, V. K. (1987). General esterase, malathion carboxylesterase and malathion resistance inCulex tarsails.Pest. Biochem. Physiol. 28279.

    Google Scholar 

  • Zingde, S., Rodrigues, V., Joshi, S. M., and Krishnan, K. S. (1983). Molecular properties ofDrosophila acetylcholinesterase.J. Neurochem. 411243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was funded in part by the Rural Credits Development Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Healy, M.J., Dumancic, M.M. & Oakeshott, J.G. Biochemical and physiological studies of soluble esterases fromDrosophila melanogaster . Biochem Genet 29, 365–388 (1991). https://doi.org/10.1007/BF00554144

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00554144

Key words

Navigation