Skip to main content
Log in

The phylogeny of echinoderm classes based on mitochondrial gene arrangements

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Previous analyses have demonstrated that, among the echinoderms, the sea star (class: Asteroidea) mitochondrial genome contains a large inversion in comparison to the mitochondrial DNA of sea urchins (class: Echinoidea). Polymerase chain reaction amplification, DNA cloning, and sequencing have been used to examine the relationships of the brittle stars (class: Ophiuroidea) and sea cucumbers (class: Holothuroidea) to the sea stars and sea urchins. The DNA sequence of the regions spanning potential inversion junctions in both brittle stars and sea cucumbers has been determined. This study has also revealed a highly modified tRNA cluster in the ophiuroid mitochondrial genome. Our data indicate mitochondrial gene arrangement patterns that group the sea cucumbers with sea urchins and sea stars with brittle stars. This use of molecular characters clarifies the relationships among these classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, Banker AT, Barrell BG, deBruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Google Scholar 

  • Anderson S, deBruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) The complete sequence of bovine mtDNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Google Scholar 

  • Arnason U, Gullber A, Widegren B (1991) The complete nucleotide sequence of the mitochondrial DNA of the fin whale,Balaenoptera physalus. J Mol Evol 33:556–568

    Google Scholar 

  • Arnason U, Johnsson E (1992) The complete mitochondrial DNA sequence of the harbor seal,Phoca vitulina. J Mol Evol 34:493–505

    Google Scholar 

  • Asakawa S, Kumazawa Y, Araki T, Himeno H, Miura K, Watanabe K (1991) Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. J Mol Evol 32:511–520

    Google Scholar 

  • Baker AN, Rowe FWE, Clark HES (1986) A new class of Echinodermata from New Zealand. Nature 31:862–864

    Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mtDNA. Cell 26:167–180

    Google Scholar 

  • Blake DB (1987) A classification and phylogeny of postPalaeozoic sea stars (Asteroidea:Echinodermata). J Nat Hist 21:481–528

    Google Scholar 

  • Brown WM (1985) The mitochondrial genome of animals. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 95–130

    Google Scholar 

  • Buroker NE, Brown JR, Gilbert TA, O'Hara PJ, Beckenbach AT, Thomas WK, Smith MJ (1990) Length heteroplasmy of sturgeon mtDNA: an illegitimate elongation model. Genetics 124:157–163

    Google Scholar 

  • Cabot EL, Beckenbach AT (1989) Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. CABIOS 5:233–234.

    Google Scholar 

  • Cantatore P, Roberti M, Morisco P, Rainaldi G, Gadaleta M, Saccone C (1987a) A novel gene order in theParacentrotus lividus mitochondrial genome. Gene 53:41–54

    Google Scholar 

  • Cantatore P, Gadaleta M, Robert M, Saccone C, Wilson AC (1987b) Duplication and remoulding of transfer RNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature 32:853–855

    Google Scholar 

  • Cantatore P, Roberti M, Rainaldi G, Gadaleta M, Saccone C (1989) The complete nucleotide sequence, gene organization, and genetic code of the mitochondrial genome ofParacentrotus lividus. J Biol Chem 264:10965–10975

    Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mtDNA molecule ofDrosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271

    Google Scholar 

  • De Giorgi C, Lanave C, Musci D, Saccone C (1991) Mitochondrial DNA in the sea urchinArbacia lixula: evolutionary inferences from nucleotide sequence analysis. Mol Biol Evol 8:515–529

    Google Scholar 

  • Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol 212:599–634

    Google Scholar 

  • Desjardins P, Morais R (1991) Nucleotide sequence and evolution of coding and noncoding regions of a quail mitochondrial genome. J Mol Evol 32:153–161

    Google Scholar 

  • Durham JW, et al (1966) Part U, Echinodermata 3. In: Moore RC (ed) Treatise on invertebrate palaeontology. University of Kansas Press, Lawrence, pp 1–366

    Google Scholar 

  • Fell HB (1982) Echinodermata. In: Parker SP (ed) Synopsis and classification of living organisms. McGraw-Hill, New York, pp 785–813

    Google Scholar 

  • Gadaleta G, Pepe G, DeCandia G, Quagliariello C, Sbisa E, Saccone C (1989) The complete nucleotide sequence of theRattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28:497–516

    Google Scholar 

  • Hattori M, Sakaki Y (1986) Dideoxy sequencing method using denatured plasmid templates. Anal Biochem 152:232–238

    Google Scholar 

  • Henikoff S (1987) Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol 155:156–165

    Google Scholar 

  • Himeno H, Masaki H, Kawai T, Ohta T, Kumagai I, Miura I, Watanabe K (1987) Unusual genetic codes and novel gene structure for tRNAAGY Ser in starfish mtDNA. Gene 56:219–230

    Google Scholar 

  • Hoffman RJ, Boore JL, Brown WM (1992) A novel mitochondrial genome organization for the blue mussel,Mytilus edulis. Genetics 131:397–412

    Google Scholar 

  • Jacobs H, Elliot D, Math V, Farguharson A (1988a) Nucleotide sequence and gene organization of sea urchin mtDNA. J Mol Biol 201:185–217

    Google Scholar 

  • Jacobs H, Balfe P, Cohen B, Farquharson A, Comito L (1988b) Phylogenetic implications of genome rearrangement and sequence evolution in echinoderm mitochondrial DNA. In: Paul CRC, Smith AB (eds) Echinoderm phylogeny and evolutionary biology. Clarendon Press, Oxford, pp 121–137

    Google Scholar 

  • Jacobs H, Asakawa S, Araki T, Mikura K, Smith MJ, Watanabe K (1989) Conserved tRNA gene cluster in starfish mtDNA. Cuff Genet 15:193–206

    Google Scholar 

  • Lansman RA, Shade R, Shapira J, Avise J (1981) The use of restriction endonucleases to measure mtDNA sequence relatedness in natural populations. J Mol Evol 17:214–226

    Google Scholar 

  • Maggenti AR (1983) Nematode higher classification as influenced by species and family concepts. In: Stone AR, Platt HM, Kalil LF, (eds) Concepts in nematode systematics. The Systematics Association Special vol. 22. Academic Press, NY

    Google Scholar 

  • Messing J, Vieira J (1982) A new pair of M13 vectors for selecting either strand of double-digest restriction fragments. Gene 19:269–276

    Google Scholar 

  • Moritz C, Brown WM (1987) Tandem duplications in animal mtDNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci USA 84:7183–7187

    Google Scholar 

  • Okimoto R, Chamberlin H, Macfarlane J, Wolstenholme D (1991) Repeated sequence sets in mitochondrial DNA molecules of root-knot nematodes (Meloidogyne): nucleotide sequences, genome location and potential for host-race identification. Nucleic Acids Res 19:1619–1626

    Google Scholar 

  • Okimoto R, Macfarlane J, Clary D, Wolstenholme D (1992) The mitochondrial genomes of two nematodes,Caenorhabditis elegans andAscaris suum. Genetics 130:471–498

    Google Scholar 

  • Pääbo S, Thomas WK, Whitfield KM, Kumazawa Y, Wilson AC (1991) Rearrangements of mitochondrial transfer RNA genes in marsupials. J Mol Evol 33:426–430

    Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence analysis. Proc Natl Acad Sci USA 85:2444–2448

    Google Scholar 

  • Rand DM, Harrison RG (1989) Molecular population genetics of mtDNA size variation in crickets. Genetics 121:551–569

    Google Scholar 

  • Roe B, Ma D-P, Wilson R, Wong J (1985) The complete nucleotide sequence of theXenopus laevis mitochondrial genome. J Biol Chem 260:9759–9774

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Smiley S (1988) The phylogenetic relationships of holothurians: a cladistic analysis of the extant echinoderm classes. In: Paul CRC, Smith AB (eds) Echinoderm phylogeny and evolutionary biology. Clarendon Press, Oxford, pp 69–84

    Google Scholar 

  • Smith AB (1988a) Fossil evidence for the relationships of the extant echinodem classes and their times of divergence. In: Paul CRC, Smith AB (eds) Echinodem phylogeny and evolutionary biology. Clarendon Press, Oxford, pp 85–97

    Google Scholar 

  • Smith AB (1988b) Phylogenetic relationships, divergence times, and rates of molecular evolution for camarodont sea urchins. Mol Biol Evol 5:345–346

    Google Scholar 

  • Smith, AB (1992) Echinodern phylogeny: morphology and molecules approach accord. TREE 7:224–229

    Google Scholar 

  • Smith MJ, Banfield DK, Doteval K, Gorski S, Kowbel D (1989) Gene arrangement in sea star mtDNA demonstrates a major inversion event during echinoderm evolution. Gene 76:181–185

    Google Scholar 

  • Smith MJ, Banfield DK, Doteval K, Gorski S, Kowbel DJ (1990) Nucleotide sequence of nine protein-coding genes and 22 tRNAs in the mtDNA of the sea starPisaster ochraceus. J Mol Evol 31:195–204

    Google Scholar 

  • Strathmann R (1988) Larvae, phylogeny, and von Baer's law. In: Paul CRC, Smith AB (eds) Echinodem phylogeny and evolutionary biology. Clarendon Press, Oxford, pp 53–68

    Google Scholar 

  • Zuckerkandl E (1976) Programs of gene action and progressive evolution. In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum, New York, pp 387–447

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M.J., Arndt, A., Gorski, S. et al. The phylogeny of echinoderm classes based on mitochondrial gene arrangements. J Mol Evol 36, 545–554 (1993). https://doi.org/10.1007/BF00556359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00556359

Key words

Navigation