Skip to main content
Log in

The age-dependent changes in the number of3H-ouabain binding sites in mammalian skeletal muscle

  • Excitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The influence of age on the binding of3H-ouabain in skeletal muscle has been characterized in rats, mice and guinea pigs. Measurements performed using biopsies and intact fibers obtained from different types of rat muscles showed that from birth to the 4th week of life, the number of3H-ouabain binding sites per unit weight increases up to 5-fold, followed by almost the same relative decrease to a plateau around 250 pmol/g wet wt at an age of 22 weeks. These changes were not associated with any major alterations in apparentK D (1.7–3.1×10−7M) dissociation rate or heterogeneity in binding characteristics. Measurements of 3-O-methylfluorescein phosphatase activity, an enzyme activity which is closely correlated to the Na−K-ATPase activity, confirmed the3H-ouabain binding data.

In mice, the number of3H-ouabain binding sites showed similar, albeit less pronounced changes with age, a maximum being reached at the 4th week of life. In guinea pigs, the number of3H-ouabain binding sites per unit weight decreased by 60% from birth to maturity.

The results indicate that the early development and differentiation of individual skeletal muscles is associated with a marked increase in the number of Na−K-pumps (when expressed as pmol/muscle), until at maturity a plateau is reached. However, when expressed as pmol/g wet wt the increase is followed by a decrease to a plateau. This may in part account for the relatively low digitalis sensitivity seen in infants as compared to newborn and mature individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aalkjær C, Kjeldsen K, Nørgaard Aa, Clausen T, Mulvany JM (1984)3H-ouabain binding sites and sodium content in resistance vessels and skeletal muscle of spontaneously hypertensive and potassium depleted rats. Hypertension (submitted)

  • Asano Y, Liberman UA, Edelmann IS (1976) Relationship between Na+-dependent respiration and Na+−K+-adenosine triphosphatase activity in rat skeletal muscle. J Clin Invest 57:368–379

    Google Scholar 

  • Biron R, Burger A, Chinet A, Clausen T, Dubois-Ferriere R (1979) Thyroid hormones and the energetics of active sodium-potassium transport in mammalian skeletal muscles. J Physiol 27:47–60

    Google Scholar 

  • Clausen T, Hansen O (1974) Ouabain binding and Na+−K+ transport in rat muscle cells and adipocytes. Biochem Biophys Acta 345:387–404

    Google Scholar 

  • Clausen T, Hansen O (1977) Active Na−K transport and the rate of ouabain binding. The effect of insulin and other stimuli on skeletal muscle and adipocytes. J Physiol 270:415–430

    Google Scholar 

  • Clausen T, Sellin LC, Thesleff S (1981) Quantitative changes in ouabain binding after denervation and during reinnervation of mouse skeletal muscle. Acta Physiol Scand III:373–375

    Google Scholar 

  • Clausen T, Hansen O, Kjeldsen K, Nørgaard Aa (1982) Effect of age, potassium depletion and denervation on specific displaceable3H-ouabain binding in rat skeletal muscle in vivo. J Physiol 333:367–381

    Google Scholar 

  • Clausen T, Kjeldsen K, Nørgaard Aa (1983) Effecgs of denervation on sodium, potassium and3H-ouabain binding in muscles of normal and potassium-depleted rats. J Physiol 345:123–134

    Google Scholar 

  • Crettaz M, Prentki M, Zaninetti D, Jeanrenaud B (1980) Insulin resistance in soleus muscle from obese zucker rats. Biochem J 186:525–534

    Google Scholar 

  • DeFronzo RA, Bia M, Smith D (1982) Clinical disorders of hyperkalemia. Ann Rev Med 33:521–554

    Google Scholar 

  • Desaiah D, Mishra SK, Hobson M (1981) Quantitative measurements of3H-ouabain binding to human skeletal muscle cryostat sections. J Neurol Sci 51:457–464

    Google Scholar 

  • Desnuelle C, Lombet A, Serratrice G, Lazdunski M (1982) Sodium channel and sodium pump in normal and pathological muscles from patients with myotonic muscular dystrophy and lower motor neuron impairment. J Clin Invest 69:358–367

    Google Scholar 

  • De Villafranca GW (1954) Adenosinetriphosphatase activity in developing rat muscle. J Exp Zool 127:367–388

    Google Scholar 

  • Drachman DB, Johnston DM (1973) Development of a mammalian fast muscle: Dynamic and biochemical properties correlated. J Physiol 234:29–42

    Google Scholar 

  • Edge MB (1970) Development of apposed sarcoplasmic reticulum at the T system and sarcolemma and the change in orientation of triads in rat skeletal muscle. Dev Biol 23:634–650

    Google Scholar 

  • Erdman E, Philipp G, Scholtz H (1980) Cardiac gylcoside receptor, (Na+−K+)-ATPase activity and force of contraction in rat heart. Biochem Pharmacol 29:3219–3229

    Google Scholar 

  • Hansen O, Skou JC (1973) A study of the influence of the concentration of Mg2+, Pi, K+, Na+, and tris on (Mg2++Pi)-supported g-strophanthin binding to (Na++K+)-activated ATPase from ox brain. Biochim Biophys Acta 311:51–66

    Google Scholar 

  • Hnik P, Holas M, Krekule I, Kriz N, Mejsnar J, Smiesko V, Ujec E, Vyskocil F (1976) Work-induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion-exchanger microelectrodes. Pflügers Arch 362:85–94

    Google Scholar 

  • Kjeldsen K, Nørgaard Aa, Clausen T (1982) Age-dependent changes in the number of3H-ouabain binding sites in rat soleus muscle. Biochim Biophys Acta 686:253–256

    Google Scholar 

  • Kjeldsen K, Nørgaard Aa, Clausen T (1984a) Effect of K-depletion on3H-ouabain binding and Na−K-contents in mammalian skeletal muscle. Acta Physiol Scand (in press)

  • Kjeldsen K, Nørgaard Aa, Gøtzsche CO, Thomassen A, Clausen T (1984b) The effect of thyroid function on the number of Na−K-pumps in human skeletal muscle. Lancet 8393:8–10

    Google Scholar 

  • Kjeldsen K, Nørgaard Aa, Clausen T (1984c) Changes in the number of Na−K-pumps (digitalis-receptors) in skeletal muscle may in part account for the variations in digitalis toxicity with age, K-deficiency and the thyroid status. Eur Heart J 5 (Abstr Suppl 1), 43

    Google Scholar 

  • Neill CA (1965) The use of digitalis in infants and children. Prog. Cardiovasc Dis 7:399–416

    Google Scholar 

  • Nørgaard Aa, Kjeldsen K, Clausen T (1981) Potassium depletion decreases the number of3H-ouabain binding sites and the active Na−K-transport in skeletal muscle. Nature 293:739–741

    Google Scholar 

  • Nørgaard Aa, Kjeldsen K, Hansen O, Clausen T (1983) A simple and rapid method for the determination of the number of3H-ouabain binding sites in biopsies of skeletal muscle. Biochim Biophys Res Commun 111:319–325

    Google Scholar 

  • Nørgaard Aa, Kjeldsen K, Clausen T (1984a) A method for the determination of the total number of3H-ouabain binding sites in biopsies of human skeletal muscle. J Scand Clin Lab Invest (in press)

  • Nørgaard Aa, Kjeldsen K, Hansen O (1984b) (Na++K+)-ATPase activity of crude homogenates of rat skeletal muscle as estimated from their K+-dependent 3-O-methylfluorescein phosphatase activity. Biochim Biophys Acta 770:203–209

    Google Scholar 

  • Sejersted OM, Medbø JI, Hermansen L (1982) Metabolic acidosis and changes in water and electrolyte balance after maximal exercise. In: Metabolic acidosis. Pitman Books Ltd. London. Ciba Foundation Symp 87:153–167

    Google Scholar 

  • Sperelakis N (1972) (Na+, K+)-ATPase activity of embryonic chick heart and skeletal muscles as a function of age. Biochim Biophys Acta 266:230–237

    Google Scholar 

  • Vigne P, Frelin C, Lazdunski M (1982) Ontogeny of the (Na+, K+)-ATPase during chick skeletal myogenesis. J Biol Chem 257:5380–5384

    Google Scholar 

  • Wettrell G, Andersson K-E (1977) Clinical pharmacokinetics of digoxin in infants. Clin Pharmacokinetics 2:17–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kjeldsen, K., Nørgaard, A. & Clausen, T. The age-dependent changes in the number of3H-ouabain binding sites in mammalian skeletal muscle. Pflugers Arch. 402, 100–108 (1984). https://doi.org/10.1007/BF00584838

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584838

Key words

Navigation