Skip to main content
Log in

Glucose transport in the yeastKluyveromyces lactis

I. Properties of an inducible low-affinity glucose transporter gene

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

In most strains ofKluyveromyces lactis, respiratory function is not required for growth on glucose. However, some natural variant strains are unable to grow when respiration is blocked by specific inhibitors (Rag henotype). This phenotype is due to an allelic variation of the chromosomal geneRAG1. The sensitive variants have a recessive allelerag1. TheRAG1 gene has been cloned by complementation of arag1 strain from a genomic bank derived from a Rag+ strain. The nucleotide sequence of the cloned gene indicated that theRAG1 product was a sugar transporter protein. The amino acid sequence deduced from the gene structure contained the 12 hydrophobic segments typical of a transmembrane protein, and showed a high degree of homology with theGAL2 (galactose permease) andHXT2 (a high-affinity glucose transporter) proteins ofSaccharomyces cerevisiae. In arag1 null mutant, as in the naturalrag1 variant, uptake of glucose at high external glucose concentrations was impaired. TheRAG1 protein appears to correspond to a low-affinity glucose transporter. Transcription of theRAG1 gene, which was undetectable when cells were grown in glycerol, was induced by glucose. It is concluded that respiration-dependent growth on glucose of the Rag variant strains is due to a defect in this inducible glucose transport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcorn ME, Griffin CC (1978) A kinetic analysis of D-xylose transport inRhodotorula glutinis. Biochim Biophys Acta 510:361–371

    Google Scholar 

  • Bianchi MM, Falcone C, Chen XJ, Wésolowski-Louvel M, Frontali L, Fukuhara H (1987) Transformation ofKluyveromyces lactis by new vectors derived from a 1.6 μm circular plasmid of yeast. Curr Genet 12:185–192

    Google Scholar 

  • Bisson LF, Fraenkel DG (1983a) Involvement of kinases in glucose and fructose uptake bySaccharomyces cerevisiae. Proc Natl Acad Sci USA 80:1730–1734

    Google Scholar 

  • Bisson LF, Fraenkel DG (1983b) Transport of 6-deoxyglucose inSaccharomyces cerevisiae. J Bacteriol 155:995–1000

    Google Scholar 

  • Bucher T, Redetzki H (1951) Eine spezifische photometrische Bestimmung von Äthylalkohol auf fermentativem Wege. Klin Wochenschr 29:615

    Google Scholar 

  • Carlson M, Botstein D (1982) Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28: 145–154

    Google Scholar 

  • Casadaban MJ, Martinez-Arias A, Shapira SK, Chou J (1983) β-galactosidase gene fusions for analyzing gene expression inEscherichia coli and yeast. Methods Enzymol 100:293–308

    Google Scholar 

  • Celenza JL, Marshall-Carlson L, Carlson M (1988) The yeastSNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc Natl Acad Sci USA 85:2130–2134

    Google Scholar 

  • Chang YD, Dickson RC (1988) Primary structure of the lactose permease gene from the yeastKluyveromyces lactis. Presence of an unusual transcript structure. J Biol Chem 263:16696–16703

    Google Scholar 

  • Chen XJ (1987). Etude du plasmide pKD1 et développement de systèmes d'expression de gènes chez la levureKluyveromyces lactis. Phd Thesis Université de Paris-Sud

  • Chen XJ, Fukuhara H (1988) A gene fusion system using the 3′ aminoglycoside phosphotransferase gene of the kanamycin resistance transposon Tn903: use in the yeastKluyveromyces lactis andSaccharomyces cerevisiae. Gene 69:181–192

    Google Scholar 

  • Chen XJ, Wésolowski-Louvel M, Fukuhara H (1992) Glucose transport in the yeastKluyveromyces lactis. II. Transcriptional regulation of the glucose transporter geneRAG1. Mol Gen Genet

  • Does AL, Bisson LF (1989) Comparison of glucose uptake kinetics in different yeasts. J Bacteriol 171:1303–1308

    Google Scholar 

  • Douglas HC, Hawthorne D (1964) Enzymatic expression and genetic linkage of genes controlling galactose utilization inSaccharomyces cerevisiae. Genetics 49:837–844

    Google Scholar 

  • Gasnier B (1987) Characterization of low- and high-affinity glucose transports in the yeastKluyveromyces marxianus. Biochim Biophys Acta 903:425–433

    Google Scholar 

  • Goffrini P, Algeri AA, Donnini C, Wésolowski-Louvel M, Ferrero I (1989)RAG1 andRAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory function for the growth on sugars. Yeast 5:99–106

    Google Scholar 

  • Goffrini P, Wésolowski-Louvel M, Ferrero I, Fukuhara H (1990)RAG1 gene of the yeastKluyveromyces lactis codes for a sugar transporter. Nucleic Acids Res 18:5294

    Google Scholar 

  • Goffrini P, Wésolowski-Louvel M, Ferrero I (1991) A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeastKluyveromyces lactis. Mol Gen Genet 228:401–409

    Google Scholar 

  • Kruckeberg AL, Bisson LF (1990) TheHXT2 gene ofSaccharomyces cerevisiae is required for high-affinity glucose transport. Mol Cell Biol 10:5903–5913

    Google Scholar 

  • Lagunas R, De Juan C, Benito B (1986) Inhibition of biosynthesis ofSaccharomyces cerevisiae sugar transport system by tunicamycin. J Bacteriol 168:1484–1486

    Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1981) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764

    Google Scholar 

  • Lang JM, Cirillo VP (1987) Glucose transport in a kinaselessSaccharomyces cerevisiae mutant. J Bacteriol 169:2932–2937

    Google Scholar 

  • Mueckler MC, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HIT (1985) Sequence and structure of a human glucose transporter. Science 229:941–945

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Nehlin JO, Carlberg M, Ronne H (1989) Yeast galactose permease is related to yeast and mammalian glucose transporters. Gene 85:313–319

    Google Scholar 

  • Neigeborn L, Carlson M (1984) Genes affecting the regulation ofSUC2 gene expression by glucose repression inSaccharomyces cerevisiae. Genetics 108:845–858

    Google Scholar 

  • Neigeborn L, Schwartzberg P, Reid R, Carlson M (1986) Null mutations in theSNF3 gene ofSaccharomyces cerevisiae cause a different phenotype than do previously isolated missense mutations. Mol Cell Biol 6:3569–3574

    Google Scholar 

  • Postma E, van den Broek PJA (1990) Continuous-culture study of the regulation of glucose and fructose transport inKluyveromyces marxianus CBS 6556. J Bacteriol 172:2871–2876

    Google Scholar 

  • Riley MI, Sreekrishna K, Bhairi S, Dickson RC (1987) Isolation and characterization of mutants ofKluyveromyces lactis defective in lactose transport. Mol Gen Genet 208:145–151

    Google Scholar 

  • Royt PW, MacQuillan AM (1976) Evidence for an inducible glucose transport system inKluyveromyces lactis. Biochim Biophys Acta 426:302–316

    Google Scholar 

  • Schneider RP, Wiley WR (1971) Kinetic characteristics of the two glucose transport systems inNeurospora crassa. J Bacteriol 106:487–492

    Google Scholar 

  • Sherman F, Fink G, Hicks JB (1983) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Spencer-Martin I, van Uden N (1985) Inactivation of active glucose transport inCandida wickerhamii is triggered by exocellular glucose. FEMS Microbiol Lett 28:277–279

    Google Scholar 

  • Szkutnicka K, Tschopp JF, Andreuw L, Cirillo VP (1989) Sequence and structure of the yeast galactose transporter. J Bacteriol 171:4486–4493

    Google Scholar 

  • Tschopp JF, Emr SD, Field C, Schekman R (1986)GAL2 codes for a membrane-bound subunit of the galactose permease inSaccharomyces cerevisiae. J Bacteriol 166:313–318

    Google Scholar 

  • Wésolowski M, Algeri A, Goffrini P, Fukuhara H (1982) Killer DNA plasmids of the yeastKluyveromyces lactis. I. Mutations affecting the killer phenotype. Curr Genet 150:137–140

    Google Scholar 

  • Wésolowski-Louvel M, Tanguy-Rougeau C, Fukuhara H (1988a) A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast. Yeast 4:71–81

    Google Scholar 

  • Wésolowski-Louvel M, Goffrini P, Ferrero I (1988b) TheRAG2 gene of the yeastKluyveromyces lactis codes for a putative phosphoglucose isomerase. Nucleic Acids Res 16:8714

    Google Scholar 

  • White MK, Weber MJ (1989) Leucine zipper motif update. Nature 340:103–104

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wésolowski-Louvel, M., Goffrini, P., Ferrero, I. et al. Glucose transport in the yeastKluyveromyces lactis . Molec. Gen. Genet. 233, 89–96 (1992). https://doi.org/10.1007/BF00587565

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587565

Key words

Navigation