Skip to main content
Log in

Caffeine increases maximal anaerobic power and blood lactate concentration

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

The aim of this study was to specify the effects of caffeine on maximal anaerobic power (W max). A group of 14 subjects ingested caffeine (250 mg) or placebo in random double-blind order. TheW max was determined using a force-velocity exercise test. In addition, we measured blood lactate concentration for each load at the end of pedalling and after 5 min of recovery. We observed that caffeine increasedW max [964 (SEM 65.77) W with caffeine vs 903.7 (SEM 52.62) W with placebo;P<0.02] and blood lactate concentration both at the end of pedalling [8.36 (SEM 0.95) mmol · l−1 with caffeine vs 7.17 (SEM 0.53) mmol · l−1 with placebo;P<0.011 and after 5 min of recovery [10.23 (SEM 0.97) mmol · l−1 with caffeine vs 8.35 (SEM 0.66) mmol · l−1 with placebo;P<0.04]. The quotient lactate concentration/power (mmol · l−1 · W−1) also increased with caffeine at the end of pedalling [7.6 · 10−3 (SEM 3.82 · 10−5) vs 6.85 · 10−3 (SEM 3.01 · 10−5);P<0.01] and after 5 min of recovery [9.82·10−3 (SEM 4.28 · 10−5) vs 8.84 · 10−3 (SEM 3.58 · 10−5);P<0.02]. We concluded that caffeine increased bothW max and blood lactate concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alles G, Feigen G (1942) The influence of benzedrine on work decrement and patellar reflex. Am J Physiol 126:392–400

    Google Scholar 

  • Asmussen E, Boje O (1948) The effect of alcohol and some drugs on capacity for work. Acta Phys Scand 15:109–113

    Google Scholar 

  • Astrup A, Toubro S, Cannon S, Hein P, Breum L, Madsen J (1990) Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 51:759–767

    Google Scholar 

  • Bellet S, Kerschbaum A, Aspe J (1965) The effects of caffeine on free fatty acids. Arch Intern Med 116:750–752

    Google Scholar 

  • Berglund B, Hemmingsson P (1982) Effects of caffeine ingestion on exercise performance at low and high altitudes in cross country skiers. Int J Sports Med 3:234–236

    Google Scholar 

  • Bertocci L, Gollnick PD (1985) pH effect on mitochondria and individual enzyme function. Med Sci Sports Exerc 17:244–249

    Google Scholar 

  • Carbo M, Segura J, De La Torre R (1989) La caféine, données de base et facteurs capables de les modifier. Sci Sport 4:7–13

    Google Scholar 

  • Collomp K, Anselme F, Audran M, Gay JP, Chanal JL, Préfaut C (1991) Effects of moderate exercise on the pharmacokinetics of caffeine. Eur J Clin Pharmacol 40:279–282

    Google Scholar 

  • Collomp K, Ahmaidi S, Audran M, Chanal JL, Préfaut C Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate test. Int J Sports Med

  • Costill DL, Dalsy GP, Fink WJ (1978) Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports 10:155–158

    Google Scholar 

  • Crescitelli F, Taylor C (1944) The lactate response to exercise and its relationship to physical fitness. Am J Physiol 141:630–640

    Google Scholar 

  • Di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:143–222

    Google Scholar 

  • Di Prampero PE, Meyer M, Ceretelli P, Piiper J (1981) Energy sources and mechanical efficiency of anaerobic work in dog gastrocnemius. Pflügers Arch 389:257–262

    Google Scholar 

  • Essig D, Costill DL, Von Handel PJ (1980) Effects of caffeine ingestion on utilization of muscle glycogen and lipid during leg ergometer cycling. Int J Sports Med 1:86–90

    Google Scholar 

  • Falk B, Burstein R, Ashkenazi I, Spilberg O, Alter J, Zylber-Katz E, Rubinstein A, Bashan N, Shapiro Y (1989) The effect of caffeine on physical performance after prolonged exercise. Eur J Appl Physiol 59:168–173

    Google Scholar 

  • Fisher EH, Heilmayer LMG, Hascke RH (1971) Phosphorylase and the control of glycogen degradation. Curr Top Cell Regul 4:211–251

    Google Scholar 

  • Foltz E, Ivy A, Barborka C (1943) The influence of amphetamine (Benzedrine) sulfate, D-desoryiephedrine hydrochloride (Pervitan), and caffeine upon work output and recovery when rapidly exhausting work is done by trained subjects. J Lab Clin Med 28:603–606

    Google Scholar 

  • Fujino M, Fujino S (1964) Die Beziehung zwischen Coffein Kontraktur und Calcium am Froschskelettmuskel. Arch Ges Physiol 278:478–484

    Google Scholar 

  • Issekutz BJR (1984) Effect of β-adrenergic blockade on lactate turnover in exercising dogs. J Appl Physiol 57:1754–1759

    Google Scholar 

  • Ivy JL, Costill DL, Fink WJ, Lower RW (1979) Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports 11:6–11

    Google Scholar 

  • Kavaler F, Anderson T, Fister V (1978) Sarcolemmal site of caffeine's inotropic action on ventricular muscle of the frog. Circ Res 42:285–290

    Google Scholar 

  • Lopes JM, Jardim AJ, Aranda JV, Macklem PT (1983) Effect of caffeine on skeletal muscle function before and after fatigue. J Appl Physiol 54:1303–1305

    Google Scholar 

  • MacIntosh BR, Barbee RW, Stainsby WN (1981) Contractile response to caffeine of rested and fatigued skeletal muscle. Med Sci Sports 13:95–99

    Google Scholar 

  • Margaria R, Cerretelli P, Di Prampero PE, Massari C, Torelli G (1963) Kinetics and mechanism of oxygen debt contraction in man. J Appl Physiol 18:371–377

    Google Scholar 

  • Mercier J, Mercier B, Prefaut Ch (1991) Blood lactate increase during the force velocity exercise test. Int J Sports Med 12:17–20

    Google Scholar 

  • Powers SK, Dodd S (1985) Caffeine and endurance performance. Sports Med 2:165–174

    Google Scholar 

  • Rennie M, Winder WW, Halloszy IO (1976) A sparing effect of increased free fatty acids on muscle glycogen content in exercising rats. Biochem J 156:647–655

    Google Scholar 

  • Robertson D, Frolich JC, Carr RK, Watson JT, Hollifield JW, Shand DG, Oates JA (1978) Effects of caffeine on plasma renine activity, catecholamines and blood pressure. N Engl J Med 298:181–186

    Google Scholar 

  • Sasaki H, Takaota I, Ishiko T (1987) Effects of sucrose on caffeine ingestion on running performance and biochemical responses to endurance running. Int J Sports Med 3:203–207

    Google Scholar 

  • Stainsby WN, Summers C, Andrew GM (1984) Plasma catecholamines and their effect on blood lactate and muscle lactate output. J Appl Physiol 57:321–325

    Google Scholar 

  • Vandewalle H, Peres G, Heller J, Panel J, Monod H (1987) Force-velocity relationships and maximal power on a cycle ergometer. Eur J Appl Physiol 56:650–656

    Google Scholar 

  • Waldeck B (1973) Sensitization by caffeine of central catecholamine receptors. J Gen Physiol 34:61–72

    Google Scholar 

  • Weber A (1968) The mechanism of action of caffeine on sarcoplasmic reticulum. J Gen Physiol 52:760–772

    Google Scholar 

  • Yamaguchi T (1975) Caffeine induced potentiation of twitches in frog single muscle fibers. Jpn J Physiol 25:693–704

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anselme, F., Collomp, K., Mercier, B. et al. Caffeine increases maximal anaerobic power and blood lactate concentration. Europ. J. Appl. Physiol. 65, 188–191 (1992). https://doi.org/10.1007/BF00705079

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00705079

Key words

Navigation