Skip to main content
Log in

Junctional feet and particles in the triads of a fast-twitch muscle fibre

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Structural details of junctional feet in triads of fish muscle are described. These feet have a less dense central core and contact both sarcoplasmic reticulum and T-tubule membranes at tetragonally disposed sites. The distribution of intramembraneous particles differs at the junctional T-membrane, and the junction is asymmetric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • BIRKS, R. I. (1965) The sarcoplasmic reticulum of twitch fibers of the frog sartorius muscle. InMuscle (edited by PAUL, W. M., DANIEL, E. E., KAY, C. M. and MONCKTON, G., pp. 199–216. New York: Pergamon Press.

    Google Scholar 

  • CAMPBELL, K. R., FRANZINI-ARMSTRONG, C. & SHAMOO, A. E. (1980) Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the ‘sarcoplasmic reticulum feet’ associated with heavy sarcoplasmic reticulum.Biochim. Biophys. Acta 602, 97–116.

    Google Scholar 

  • CASWELL, A. H., LAU, Y. H., GARCIA, M. & BRUNSWICH, J. P. (1979) Recognition and junction formation by isolated transverse tubules and terminal cisternae of skeletal muscle.J. biol. Chem. 254, 202–8.

    Google Scholar 

  • COSTANTIN, L. L. & TAYLOR, S. R. (1973) Graded excitation in frog muscle fibers.J. gen. Physiol. 61, 424–43.

    Google Scholar 

  • EASTWOOD, E. A. (1980) Triad structure in mammalian skeletal muscle: chemically skinned rabbit psoas.Anat. Rec. 196, 52a.

    Google Scholar 

  • EASTWOOD, E. A., FRANZINI-ARMSTRONG, C. & PERACCHIA, C. (1982) Freeze-fracture of crayfish muscle fibres.J. Musc. Res. Cell Motility 3, 273–94.

    Google Scholar 

  • EASTWOOD, E. A., WOOD, D. S., BOCK, K. L. & SORENSEN, M. H. (1979) Chemically skinned mammalian skeletal muscle. I. The structure of skinned rabbit psoas.Tiss. Cell 11, 553–66.

    Google Scholar 

  • EDGE, M. B. (1970) Development of apposed sarcoplasmic reticulum at the T system and sarcolemma and the change in orientation of triads in rat skeletal muscle.Devl Biol. 28, 634–59.

    Google Scholar 

  • EISENBERG, B. R. & EISENBERG, R. S. (1982) The T-SR junction in contracting single skeletal muscle fibers.J. gen. Physiol. 79, 1–19.

    Google Scholar 

  • EISENBERG, B. R. & GILAI, A. (1979) Structural changes in single muscle fibers after stimulation.J. gen. Physiol. 74, 1–16.

    Google Scholar 

  • FORBES, M. S., RENNELS, M. L. & NELSON, E. (1979) Caveolar systems and sarcoplasmic reticulum in coronary smooth muscle cells of the mouse.J. Ultrastruct. Res. 67, 325–39.

    Google Scholar 

  • FORBES, M. S. & SPERELAKIS, N. (1977) Myocardial couplings: their structural variations in the mouse.J. Ultrastruct. Res. 58, 50–65.

    Google Scholar 

  • FRANK, G. B. (1980) The current view of the source of trigger calcium in excitation-contraction coupling in vertebrate skeletal muscle.Biochem. Pharmacol. 29, 2399–406.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C. (1973) Studies of the triad: IV. Structure of the junction in frog slow fibers.J. Cell Biol. 56, 120–8.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C. (1974) Freeze-fracture of striated muscle from a spider. Structural differentiations of sarcoplasmic reticulum and transverse tubular system membranes.J. Cell Biol. 61, 501–15.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C. (1975) Membrane particles and transmission at the triad.Fed. Proc. 34, 1382–7.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C. (1976) The comparative structure of intracellular junctions in striated muscle fibers. InPathogenesis of Human Muscular Dystrophies (edited by ROWLAND, R.), pp. 611–625. Amsterdam: Excerpta Medica.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C. (1980) Structure of sarcoplasmic reticulum.Fed. Proc. 39, 2403–9.

    Google Scholar 

  • GILLY, W. F. (1981) Intramembrane charge movement and excitation-contraction (E-C) coupling. InThe Regulation of Muscle Contraction E-C Coupling (edited by GRINNELL, A. D. and BRAZIER, M. A. B.), pp. 3–20. New York: Academic Press.

    Google Scholar 

  • HEUSER, J. E. & SALPETER, S. R. (1979) Organization of acetylcholine receptors in quick frozen, deep-etched and rotary replicatedTorpedo postsynaptic membrane.J. Cell Biol. 82, 150–73.

    Google Scholar 

  • HUXLEY, A. F. (1971) The activation of striated muscle and its mechanical response.Proc. R. Soc. Lond. 178, 1–27.

    Google Scholar 

  • HUXLEY, H. E. (1957) The double array of filaments in cross-striated muscle.J. biophys. biochem. Cytol. 3, 631–71.

    Google Scholar 

  • JEWETT, P. H., SOMMER, J. R. & JOHNSON, E. A. (1971) Cardiac muscle, its ultrastructure in the finch and hummingbird with special reference to the sarcoplasmic reticulum.J. Cell Biol. 49, 50–65.

    Google Scholar 

  • KACHAR, B. & REESE, T. S. (1982) Evidence for the lipidic nature of tight junction strands.Nature 296, 464–6.

    Google Scholar 

  • KELLY, D. E. (1969) The fine structure of skeletal muscle triad junctions.J. Ultrastruct. Res. 29, 37–49.

    Google Scholar 

  • KELLY, D. E. & CAHILL, M. A. (1969) Skeletal muscle triad junction fine structure; new observations regarding dimples of the sarcoplasmic reticulum terminal cisternae.J. Cell Biol. 43, 66a.

    Google Scholar 

  • KELLY, D. E. & KUDA, A. M. (1979) Subunits of the triadic junction in fast skeletal muscle as revealed by freeze-fracture.J. Ultrastruct. Res. 68, 220–33.

    Google Scholar 

  • KOVACS, L., RIOS, E. & SCHNEIDER, M. F. (1979) Calcium transients and intramembrane charge movement in skeletal muscle fibres.Nature 279, 391–6.

    Google Scholar 

  • MATHIAS, R. T., LEVIS, R. A. & EISENBERG, R. S. (1980) Electrical models of excitation contraction coupling and charge movement in skeletal muscle.J. gen. Physiol. 76, 1–31.

    Google Scholar 

  • MILLER, R. G. (1980) Do ‘lipidic particles’ represent intermembrane attachment sites?Nature 287, 166–8.

    Google Scholar 

  • PALADE, G. F. (1952) A study of fixation for electron microscopy.J. exp. Med. 95, 285–91.

    Google Scholar 

  • RAND, R. P., REESE, T. S. & MILLER, R. G. (1981) Phospholipid deformations associated with interbilayer contact and fusion.Nature 293, 237–8.

    Google Scholar 

  • RAKOWSKI, R. F. & BEST, P. M. (1982) Measurement of membrane charge movement and intracellular Ca2+ release in frog skeletal muscle fibers.Biophys. J. 37, 23a.

    Google Scholar 

  • RASH, J. E. & ELLISMAN, M. H. (1974) Studies of excitable membranes. I. Macromolecular specializations of the neuromuscular junction and nonjunctional sarcolemma.J. Cell Biol. 63, 567–86.

    Google Scholar 

  • REVEL, J. P. (1962) The sarcoplasmic reticulum of the bat crycothyroid muscle.J. Cell Biol. 12, 572–88.

    Google Scholar 

  • SCHNEIDER, M. F. (1970) Linear electrical properties of the transverse tubules and surface membrane of skeletal muscle fibres.J. gen. Physiol. 56, 640–71.

    Google Scholar 

  • SCHNEIDER, M. F. (1981) Membrane charge movement and depolarization-contraction coupling.Ann. Rev. Physiol. 43, 507–17.

    Google Scholar 

  • SCHNEIDER, M. F. & CHANDLER, W. K. (1973) Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling.Nature 242, 244–6.

    Google Scholar 

  • SCHOTLAND, D. L., BONILLA, E. & WAKAYAMA, Y. (1981) Freeze-fracture studies of muscle plasma membrane in human muscular dystrophy.Acta neuropath. 54, 189–97.

    Google Scholar 

  • SCHULTZ, E., CLARK, A. W., SUZUKI, A. & CASSENS, R. G. (1980). Rattlesnake shaker muscle. II. Fine structure.Tiss. Cell 12, 335–51.

    Google Scholar 

  • SHERMAN, R. G. & LUFF, A. R. (1971) Structural features of the tarsal claw muscle of the spiderEuripelma marxi Simon.Can. J. Zool. 49, 1549–61.

    Google Scholar 

  • SOMLYO, A. P., DEVINE, C. E., SOMLYO, A. V. & NORTH, S. R. (1971) Sarcoplasmic reticulum and the temperature dependent contraction of smooth muscle in calcium-free solutions.J. Cell Biol. 51, 722–41.

    Google Scholar 

  • SOMLYO, A. V. (1979) Bridging structures spanning the junctional gap at the triad of skeletal muscle.J. Cell Biol. 80, 743–50.

    Google Scholar 

  • SOMLYO, A. V., SHUMAN, H. & SOMLYO, A. P. (1977) Composition of sarcoplasmic reticulumin situ by electron probe X-ray microanalysis.Nature 268, 556–8.

    Google Scholar 

  • SOMLYO, A. V., GONZALES-SERRATOS, H., SHUMAN, H., McCLELLAN, G. & SOMLYO, A. P. (1981) Calcium release and ionic changes in sarcoplasmic reticulum of tetanized muscle: an electron probe study.J. Cell Biol. 90, 577–94.

    Google Scholar 

  • SOMMER, J. R. & JOHNSON, E. A. (1979) Ultrastructure of cardiac muscle. InHandbook of Physiology, The Cardiovascular System I. (edited by BERNE, R. E.), pp. 113–185. The American Physiological Society.

  • SOMMER, J. R., WALLACE, N. R. & HASSELBACH, W. (1978) The collapse of sarcoplasmic reticulum in skeletal muscle.Z. Naturforschung. 33, 561–73.

    Google Scholar 

  • SMITH, D. S. (1965) The organization of flight muscle in an aphidMegoura viciae (homopetra).J. Cell Biol. 27, 379–93.

    Google Scholar 

  • VALVASSORI, R., DE EGUILEAR, M. & LANZAVECCHIA, G. (1978) Flight muscle differentiation in nymphs of dragonflyAnax imperator.Tiss. Cell 10, 167–78.

    Google Scholar 

  • VERGARA, J., BEZANILLA, F. & SALZBERG, B. M. (1978) Nile blue fluorescence signals from cut single muscle fibers under voltage clamp conditions.J. gen. Physiol. 72, 775–800.

    Google Scholar 

  • VERKLEIJI, A. J., MOUNBERS, A. C., LEUMISSEN-BIJVELT, J. & VERVERGAERT, P. H. J. (1979) Lipid intramembraneous particles.Nature 279, 162–3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franzini-Armstrong, C., Nunzi, G. Junctional feet and particles in the triads of a fast-twitch muscle fibre. J Muscle Res Cell Motil 4, 233–252 (1983). https://doi.org/10.1007/BF00712033

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712033

Keywords

Navigation