Skip to main content
Log in

Characterization of TiO2 surfaces active for novel organic syntheses

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Quantitative distributions were determined for the oxidation states of titanium cations on TiO2(001) surfaces reduced by argon ion bombardment and reoxidized by thermal treatment. Information about the inhomogeneity of these distributions within the near-surface region sampled by XPS was obtained by angle-resolved measurements in which the position of the analyzer axis was varied with respect to the surface normal. These experiments demonstrated that (1) sputtering with 2 keV ions produced a surface containing Ti cations in the 1+, 2+, 3+, and 4+, but not 0 oxidation states; (2) these were reoxidized in a roughly sequential fashion as the surface was annealed to 750 K, at which temperature reoxidation to Ti4+ was complete; and (3) the average oxidation state of the topmost layers of the ion-bombarded surface was slightly higher than that determined from XPS spectra collected normal to the surface. Since the surfaces reduced by argon ion bombardment are active for organic assembly processes, including reductive coupling of aldehydes to form symmetric olefins, these surface characterization results demonstrate that Ti0 sites arenot required to effect reductive coupling, in contrast to conclusions from previous slurry-phase studies. These observations enhance the possibility that reductive carbonyl coupling might be rendered catalytic, since a smaller cycle of oxidation states is required than previously recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.S. Kim and M.A. Barteau, J. Catal. 125 (1990) 353.

    Google Scholar 

  2. K.S. Kim and M.A. Barteau, Langmuir 6 (1990) 1485.

    Google Scholar 

  3. H. Idriss, K.S. Kim and M.A. Barteau, in:Structure-Activity and Selectivity Relationships in Heterogeneous Catalysis, eds. R.K. Grasselli and A.W. Sleight (Elsevier, Amsterdam, 1991) p. 327.

    Google Scholar 

  4. H. Idriss, K.S. Kim and M.A. Barteau, J. Catal. 139 (1993) 119.

    Google Scholar 

  5. R. Swaminathan and J.C. Kuriacose, J. Catal. 16 (1970) 357.

    Google Scholar 

  6. F. Gonzalez, G. Munuera and J.A. Prieto, J. Chem. Soc. Faraday Trans I 74 (1978) 1517.

    Google Scholar 

  7. US Patent 4,316,990 (1982).

  8. H. Idriss, K. Pierce and M.A. Barteau, J. Am. Chem. Soc. 113 (1991) 715.

    Google Scholar 

  9. H. Idriss, M. Libby and M.A. Barteau, Catal. Lett. 15 (1992) 13.

    Google Scholar 

  10. H. Idriss and M.A. Barteau, in:Heterogeneous Catalysis and Fine Chemicals, III, eds. M. Guisnet et al. (Elsevier, Amsterdam, 1993) p. 463.

    Google Scholar 

  11. H. Idriss, K.S. Kim and M.A. Barteau, Extended Abstracts-24, Materials Research Society Meeting, Boston (1990) p. 127.

  12. K. Pierce and M.A. Barteau, J. Phys. Chem., in press.

  13. J.E. McMurry, Chem. Rev. 89 (1989) 1513.

    Google Scholar 

  14. W.H. Watson Jr., W.C. McMordie Jr. and L.H. Lands, J. Polymer Sci. 55 (1961) 137.

    Google Scholar 

  15. A. Furlani, G. Moretti and A. Guerrieri, Polymer Lett. 5 (1967) 523.

    Google Scholar 

  16. D.B. Ludlum, A.W. Anderson and C.E. Ashby, J. Am. Chem. Soc. 80 (1958) 1380.

    Google Scholar 

  17. R. Dams, M. Malinowski, I. Westdorp and H. Geise, J. Org. Chem. 47 (1982) 248.

    Google Scholar 

  18. H. Idriss, K.S. Kim and M.A. Barteau, Surf. Sci. 262 (1992) 113.

    Google Scholar 

  19. G.B. Hoflund, H.L. Lin, A.L. Grogan Jr., D.A. Asbury, H. Yoneyama, O. Ikeda and H. Tamara, Langmuir 4 (1988) 346.

    Google Scholar 

  20. W. Göpel, G. Rocker and R. Feierabend, Phys. Rev. B 28 (1983) 3247.

    Google Scholar 

  21. W. Göpel, J.A. Anderson, D. Frankel, M. Jaehnig, K. Phillips, J.A. Schäfer and G. Rocker, Surf. Sci. 139 (1984) 333.

    Google Scholar 

  22. U. Bardi, K. Tamura, M. Owari and Y. Nihei, Appl. Surf. Sci. 32 (1988) 352.

    Google Scholar 

  23. W.H. Cheng, S. Akhter and H.H. Kung, J. Catal. 82 (1983) 341.

    Google Scholar 

  24. K. Lui, M. Vest, P. Berlowitz, S. Akhter and H.H. Kung, J. Phys. Chem. 90 (1986) 3138.

    Google Scholar 

  25. L.E. Firment, Surf. Sci. 116 (1982) 205.

    Google Scholar 

  26. D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, G. Meunier and R. Dormoy, Surf. Sci. 254 (1991) 81.

    Google Scholar 

  27. J. Lausmaa, B. Kasemo and H. Matson, Appl. Surf. Sci. 44 (1990) 133.

    Google Scholar 

  28. M.V. Kuznetsov, Ju.F. Zhuravlev, V.A. Zhilyaev and V.A. Gubanov, J. Electron. Spectry. Related Phenom. 58 (1992) 1.

    Google Scholar 

  29. K.E. Smith, J.L. Mackay and V.E. Henrich, Phys. Rev. B 35 (1987) 5822.

    Google Scholar 

  30. K.E. Smith and V.E. Henrich, Phys. Rev. B 32 (1985) 5384.

    Google Scholar 

  31. S.K. Sen, J. Riga and J. Verbist, Chem. Phys. Lett. 39 (1976) 560.

    Google Scholar 

  32. A.F. Carley, J.C. Roberts and M.W. Roberts, Surf. Sci. 225 (1990) L39.

    Google Scholar 

  33. J.M. McKay and V.E. Henrich, Surf. Sci. 137 (1984) 463.

    Google Scholar 

  34. S.J. Garrett, R.G. Egdell and J.C. Rivière, J. Electron Spectry. Related Phenom. 54/55 (1990) 1065.

    Google Scholar 

  35. L. Ramqvist, K. Hamrin, G. Johansson, A. Fahlman and C. Nordling, J. Phys. Chem. Solids 30 (1969) 1835.

    Google Scholar 

  36. F.C. Wang, H. Wan, K.R. Tsai, S. Wang and F. Xu, Catal. Lett. 12 (1992) 319.

    Google Scholar 

  37. C.N.R. Rao, D.D. Sarma, S. Vasadevan and M.S. Hegde, Proc. Roy. Soc. A 367 (1979) 239.

    Google Scholar 

  38. A.F. Carley, P.R. Chalker, J.C. Rivière and M.W. Roberts, J. Chem. Soc. Faraday Trans. I 83 (1987) 351.

    Google Scholar 

  39. C.N. Sayers and N.R. Armstrong, Surf. Sci. 77 (1978) 301.

    Google Scholar 

  40. G.B. Raupp and J.A. Dumesic, J. Phys. Chem. 89 (1985) 5240.

    Google Scholar 

  41. K.S. Kim and N. Winograd, Chem. Phys. Lett. 31 (1975) 312.

    Google Scholar 

  42. S. Eriksen and R.G. Egdell, Surf. Sci. 180 (1987) 263.

    Google Scholar 

  43. M.E. Levin, M. Salmeron, A.T. Bell and G.A. Somorjai, Surf. Sci. 195 (1988) 429.

    Google Scholar 

  44. C. Ocal and S. Ferrer, Surf. Sci. 191 (1987) 147.

    Google Scholar 

  45. M. Murata, K. Wakino and S. Ikeda, J. Electron Spectry. Related Phenom. 6 (1976) 459.

    Google Scholar 

  46. M. Ask, J. Lausmaa and B. Kasemo, Appl. Surf. Sci. 35 (1988/89) 283.

    Google Scholar 

  47. G. Rocker and W. Göpel, Surf. Sci. 181 (1987) 530.

    Google Scholar 

  48. H.F. Franzen, M.X. Vinaña, J.R. McCreary and R.J. Thorn, J. Solid State Chem. 18 (1976) 363.

    Google Scholar 

  49. N. Beatham, A.F. Orchard and G. Thornton, J. Phys. Chem. Solids 42 (1981) 1051.

    Google Scholar 

  50. K.S. Kim and M.A. Barteau, Surf. Sci. 223 (1989) 13.

    Google Scholar 

  51. K.S. Kim and M.A. Barteau, J. Mol. Catal. 63 (1990) 103.

    Google Scholar 

  52. H. Idriss, K.S. Kim and M.A. Barteau, J. Catal. 139 (1993) 119.

    Google Scholar 

  53. W.J. Lo, Y.W. Chung and G.A. Somorjai, Surf. Sci. 71 (1978) 199.

    Google Scholar 

  54. R.H. Tait and R.V. Kasowski, Phys. Rev. B 20 (1979) 5178.

    Google Scholar 

  55. X.D. Peng and M.A. Barteau, Langmuir 5 (1989) 1051.

    Google Scholar 

  56. X.D. Peng and M.A. Barteau, Appl. Surf. Sci. 44 (1990) 87.

    Google Scholar 

  57. X.D. Peng and M.A. Barteau, Surf. Sci. 233 (1990) 283.

    Google Scholar 

  58. R.V. Kasowski and R.H. Tait, Phys. Rev. B 20 (1979) 5168.

    Google Scholar 

  59. Y.W. Chung, W.J. Lo and G.A. Somorjai, Surf. Sci. 64 (1977) 588.

    Google Scholar 

  60. M. Wolff and J.W. Schultz, Surf. Interf. Anal. 12 (1988) 93.

    Google Scholar 

  61. T. Bussing and P.J. Holloway, J. Vac. Sci. Technol. A 3 (1985) 1923.

    Google Scholar 

  62. K. Tamura, U. Bardi and Y. Nihei, Surf. Sci. 197 (1988) L281.

    Google Scholar 

  63. Y.L. Yan, M.A. Helfland and C.R. Clayton, Appl. Surf. Sci. 37 (1989) 395.

    Google Scholar 

  64. V.E. Henrich and R.L. Kurtz, Phys. Rev. B 23 (1981) 6280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Idriss, H., Barteau, M.A. Characterization of TiO2 surfaces active for novel organic syntheses. Catal Lett 26, 123–139 (1994). https://doi.org/10.1007/BF00824038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00824038

Keywords

Navigation