Skip to main content
Log in

Bacterial resistance to uncouplers

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Uncoupler resistance presents a potential challenge to the conventional chemiosmotic coupling mechanism. InE. coli, an adaptive response to uncouplers was found in cell growing under conditions requiring oxidative phosphorylation. It is suggested that uncoupler-resistant mutants described in the earlier literature might represent a constitutive state of expression of this “low energy shock” adaptive response. In the environment, bacteria are confronted by nonclassical uncoupling factors such as organic solvents, heat, and extremes of pH. It is suggested that the low energy shock response will aid the cell in coping with the effects of natural uncoupling factors. The genetic analysis of uncoupler resistance has only recently began, and is yielding interesting and largely unexpected results. InBacillus subtilis, a mutation in fatty acid desaturase causes an increased content of saturated fatty acids in the membrane and increased uncoupler resistance. The protonophoric efficiency of uncouplers remains unchanged in the mutants, inviting nonorthodox interpretations of the mechanism of resistance. InE. coli, two loci conferring resistance to CCCP and TSA were cloned and were found to encode multidrug resistance pumps. Resistance to one of the uncouplers, TTFB, remained unchanged in strains mutated for the MDRs, suggesting a resistance mechanism different from uncoupler extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alper, S., Duncan, L., and Losick, R. (1994).Cell 77 195–205.

    PubMed  Google Scholar 

  • Aono, R., Aibe, K., Inoue, A., and Horikoshi, K. (1991).Agric. Biol. Chem. 55 1935–1938.

    Google Scholar 

  • Avetisyan, A. V., Dibrov, P. A., Skulachev, V. P., and Sokolov, M. V. (1989).FEBS Lett. 254 17–21.

    Google Scholar 

  • Avetisyan, A. V., Bogachev, A. V., Murtasina, R. A., and Skulachev, V. P. (1993).FEBS Lett. 317 267–270.

    PubMed  Google Scholar 

  • Bohlmann, H., and Apel, K. (1991).Annu. Rev. Plant Physiol. Plant Mol. Biol. 42 227–240.

    Google Scholar 

  • Burland, V., Plunkett, G. III, Daniels, D. L., and Blattner, F. R. (1994).Genomics 16 551–561.

    Google Scholar 

  • Clejan, S., Guffanti, A. A., Falk, L. H., and Krulwich, T. A. (1988).Biochim. Biophys. Acta 932 43–51.

    PubMed  Google Scholar 

  • Cohen, S. P., Levy, S. B., Foulds, J., and Rosner, J. L. (1993).J. Bacteriol. 175 7856–7862.

    PubMed  Google Scholar 

  • Decker, S. J., and Lang, D. R. (1978).J. Biol. Chem. 253 6738–6743.

    PubMed  Google Scholar 

  • Dibrov, P. A. (1991).Biochim. Biophys. Acta 1056 209–224.

    PubMed  Google Scholar 

  • Dimroth, P. (1992a). InAlkali Cation Transport Systems in Prokaryotes (Bakker, E. P., ed.), CRC Press, Boca Raton, Florida, pp. 77–100.

    Google Scholar 

  • Dimroth, P. (1992b). InAlkali Cation Transport Systems in Prokaryotes (Bakker, E. P., ed.), CRC Press, Boca Raton, Florida, pp. 139–154.

    Google Scholar 

  • Dunkley, E. A., Jr., Clejan, S., and Krulwich, T. A. (1991).J. Bacteriol. 173 7750–7755.

    PubMed  Google Scholar 

  • Gage, D. J., and Neidhardt, F. C. (1993).J. Bacteriol. 175 7105–7108.

    PubMed  Google Scholar 

  • Guffanti, A. A., and Krulwich, T. A. (1992).J. Biol. Chem. 267 9580–9588.

    PubMed  Google Scholar 

  • Guffanti, A. A., Blumenfeld, H., and Krulwich, T. A. (1981).J. Biol. Chem. 256 8416–8421.

    PubMed  Google Scholar 

  • Guffanti, A. A., Clejan, S., Falk, L. H., Hicks, D. B., and Krulwich, T. A. (1987).J. Bacteriol. 169 4469–4478.

    PubMed  Google Scholar 

  • Inoue, A., and Horikoshi, K. (1989).Nature (London)338 264–265.

    Google Scholar 

  • Kinoshita, N., Unemoto, T., and Kobayashi, H. (1984).J. Bacteriol. 160 1074–1077.

    PubMed  Google Scholar 

  • Krulwich, T. A., and Guffanti, A. A. (1989).J. Bioenerg. Biomembr. 21 663–678.

    PubMed  Google Scholar 

  • Krulwich, T. A., Guffanti, A. A., and Seto-Young, D. (1990).FEMS Microbiol. Rev. 75 271–278.

    Google Scholar 

  • Krulwich, T. A., Quirk, P. G., and Guffanti, A. A. (1990).Microbiol. Rev. 54 52–65.

    PubMed  Google Scholar 

  • Lehrer, R. I., Ganz, T., and Selsted, M. E. (1991).Cell 64 229–230.

    PubMed  Google Scholar 

  • Levy, S. B. (1992).Antimicr. Agents Chemother. 36 695–703.

    Google Scholar 

  • Lewis, K. (1994).Trends Biochem. Sci. 19 119–123.

    PubMed  Google Scholar 

  • Lomovskaya, O., and Lewis, K. (1992).Proc. Natl. Acad. Sci. USA 89 8938–8942.

    PubMed  Google Scholar 

  • Marger, M. D., and Saier, M. H., Jr. (1993).Trends Biochem. Sci. 18 13–20.

    PubMed  Google Scholar 

  • McFall, E. (1987). InEscherichia coli and Salmonella typhimurium. Cellular and Molecular Biology. (Neidhard, F. C., ed.) ASM, Washington, DC, pp. 1520–1526.

    Google Scholar 

  • Mitchell, P. (1966). Glynn Research,Chemiosmotic Coupling in Oxidative and Photosynthesis Phosphorylation. Bodmin.

  • Nakano, S., and Onoda, T. (1989).J. Basic Microbiol. 29 163–169.

    PubMed  Google Scholar 

  • Naroditskaya, V., Schlosser, M. J., Fang, N. Y., and Lewis, K. (1993).Biochem. Biophys. Res. Commun. 196 803–809.

    PubMed  Google Scholar 

  • Neiyfakh, A. A., Bidnenko, V. and Chen, L. B. (1991).Proc. Natl. Acad. Sci. USA 88 4781–4785.

    PubMed  Google Scholar 

  • Neijssel, O. M., Buurman, E. T., and de Mattos, M. J. T. (1990).Biochim. Biophys. Acta 1018 252–255.

    PubMed  Google Scholar 

  • Nikaido, H. (1994).J. Biol. Chem. 269 3905–3908.

    PubMed  Google Scholar 

  • Reizer, A., Deutscher, J., Saier, M. H., and Reizer, J. (1991).Mol. Microbiol. 5 1081–1089.

    PubMed  Google Scholar 

  • Rosen, B. P. (1986).Methods Enzymol. 125 328–336.

    PubMed  Google Scholar 

  • Rottenberg, H. (1990).Biochim. Biophys. Acta 1018 1–17.

    PubMed  Google Scholar 

  • Rouch, D. A., Cram, D. S., DiBernardino, D., Littlejohn, G., and Skurray, R. A. (1990).Mol. Microbiol. 4 2051–2062.

    PubMed  Google Scholar 

  • Schulein, R., Gentschev, I., Mollenkopf, H. J., and Goebel, W. (1992).Mol. Gen. Genet. 234 155–163.

    PubMed  Google Scholar 

  • Sedgwick, E. G., and Bragg, P. D. (1992).Biochim. Biophys. Acta 1099 45–50.

    PubMed  Google Scholar 

  • Sedgwick, E. G., Hou, C., and Bragg, P. D. (1984).Biochim. Biophys. Acta 767 479–492.

    Google Scholar 

  • Sikkema, J., de Bont, J. A. M., and Poolman, B. (1994).J. Biol. Chem. 269 8022–8028.

    PubMed  Google Scholar 

  • Sikkema, J., Poolman, B., Konings, W. N., and de Bont, J. A. M. (1992).J. Bacteriol. 174 2986–2992.

    PubMed  Google Scholar 

  • Skulachev, V. P. (1989).J. Bioenerg. Biomembr. 21 635–648.

    PubMed  Google Scholar 

  • Skulachev, V. P. (1991).FEBS Lett. 294 158–162.

    PubMed  Google Scholar 

  • Skulachev, V. P. (1994).Biochim. Biophys. Acta (in press).

  • Skurray, R. A. (1989).J. Gen. Microbiol. 135 1–103.

    PubMed  Google Scholar 

  • Tennent, J. M., Lyon, B. R., Midgley, M., Jones, I. G., Purewal, A. S., and

  • Terada, H. (1990).Environ Health Persp. 87 213–218.

    Google Scholar 

  • Terada, H., and van Dam, K. (1975).Biochim. Biophys. Acta 387 507–518.

    PubMed  Google Scholar 

  • Tokuda, H. (1992). InAlkali Cation Transport Systems in Prokaryotes, (Bakker, E. P., ed.), CRC Press, Boca Raton, Florida, pp. 125–138.

    Google Scholar 

  • Westerhoff, H. V., Kell, D. B., Kamp, F., and van Dam, K. (1988). InMicrocompartmentation (Jones, D. P., ed.), CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Wojtczak, L., and Schonfeld, P. (1993).Biochim. Biophys. Acta 1183 41–57.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, K., Naroditskaya, V., Ferrante, A. et al. Bacterial resistance to uncouplers. J Bioenerg Biomembr 26, 639–646 (1994). https://doi.org/10.1007/BF00831539

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00831539

Key words

Navigation