Skip to main content
Log in

Nephrogenic diabetes insipidus: clinical symptoms, pathogenesis, genetics and treatment

  • Invited Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

This review summarizes various aspects of the inherited kidney disorder nephrogenic diabetes insipidus (NDI). The clinical manifestations of the disease are presented. The important role of the genetic localization of the NDI gene to the X-chromosome long arm, in region Xq28, for carrier detection and early (prenatal) diagnosis of the disorder is emphasized. Following an overview of the cellular physiology involved in the antidiuretic action of vasopressin, possible mechanisms in the pathogenesis of NDI are discussed. We hypothesize that NDI is most probably due to the absence or abnormality of the renal V2 receptor. This assumption is strengthened by recent findings in receptor studies, which indicate a general V2 receptor defect in NDI, and in experiments with somatic cell hybrid cell lines, which are consistent with a co-localization of the genes for NDI and for the V2 receptor in the Xq28 region. Finally, the efficacy of the combination amiloride-hydrochlorothiazide, compared with the indomethacin-hydrochlorothiazide regimen, in the treatment of NDI is presented and the advantages of the former combination are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Forssman H (1945) On hereditary diabetes insipidus with special regard to a sex linked form. Acta Med Scand 159:3–196

    Google Scholar 

  2. Waring AJ, Kajdi L, Tappan V (1945) A congenital defect of water metabolism. Am J Dis Child 69:323–324

    Google Scholar 

  3. Williams RH, Henry C (1947) Nephrogenic diabetes insipidus: transmitted by females and appearing during infancy in males. Ann Intern Med 27:84–95

    Google Scholar 

  4. Holliday MA, Burstin C, Harrah J (1963) Evidence that the antidiuretic substance in the plasma of children with nephrogenic diabetes is antidiuretic hormone. Pediatrics 32:384–388

    Google Scholar 

  5. Luder J, Burnett D (1954) A congenital renal tubular defect. Arch Dis Child 29:44–47

    Google Scholar 

  6. Hillman DA, Neyzi O, Porter P, Cushman A, Talbot NB (1958) Renal (vasopressin-resistant) diabetes insipidus: definition of the effects of a homeostatic limitation in capacity to conserve water on the physical, intellectual and emotional development of a child. Pediatrics 21:430–435

    Google Scholar 

  7. Vest M, Talbot NB, Crawford JD (1963) Hypocaloric dwarfism and hydronephrosis in diabetes insipidus. Am J Dis Child 105:175–181

    Google Scholar 

  8. Macaulay D, Watson M (1967) Hypernatraemia in infants as a cause of brain damage. Arch Dis Child 42:485–491

    Google Scholar 

  9. Kanzaki S, Omura T, Miyake M, Enomoto S, Miyata I, Ishimitsu H (1985) Intracranial calcification in nephrogenic diabetes insipidus. JAMA 254:3349–3350

    Google Scholar 

  10. Forssman H (1955) Is hereditary diabetes insipidus of nephrogenic type associated with mental deficiency? Acta Psychiatr Neurol Scand 30:577–587

    Google Scholar 

  11. Ten Bensel RW, Peters ER (1970) Progressive hydronephrosis, hydroureter, and dilatation of the bladder in siblings with congenital nephrogenic diabetes insipidus. J Pediatr 77:439–443

    Google Scholar 

  12. Gorden P, Robertson GL, Seegmuller JE (1971) Hyperuricemia, a concomitant of congenital vasopressin-resistant diabetes insipidus in the adult. N Engl J Med 284:1057–1060

    Google Scholar 

  13. Bichet DG, Arthus M-F, Lonergan M (1991) Platelet vasopressin receptors in patients with congenital nephrogenic diabetes insipidus. Kidney Int 39:693–699

    Google Scholar 

  14. Usberti M, Dechaux M, Guillot M, Seligmann R, Pavlovitch H, Loriat C, Sachs C, Broyer M (1980) Renal prostaglandin E2 in nephrogenic diabetes insipidus: effect of inhibition of prostaglandin synthesis by indomethacin. J Pediatr 97:476–478

    Google Scholar 

  15. Monnens L, Jonkman A, Thomas C (1984) Response to indomethacin and hydrochlorothiazide in nephrogenic diabetes insipidus. Clin Sci 66:709–715

    Google Scholar 

  16. Walker NF, Rance CP (1954) Inheritance of nephrogenic diabetes insipidus. Am J Hum Genet 6:354–358

    Google Scholar 

  17. Carter C, Simpkiss M (1956) The “carrier” state in nephrogenic diabetes insipidus. Lancet II:1069–1073

    Google Scholar 

  18. Bode HH, Crawford JD (1969) Nephrogenic diabetes insipidus in North America — The Hopewell hypothesis. N Engl J Med 280: 750–754

    Google Scholar 

  19. Robinson MG, Kaplan SA (1960) Inheritance of vasopressin-resistant (‘nephrogenic’) diabetes insipidus. Am J Dis Child 99: 164–174

    Google Scholar 

  20. Schreiner RL, Skafish PR, Anand SK, Northway JD (1978) Congenital nephrogenic diabetes insipidus in a baby girl. Arch Dis Child 53: 906–915

    Google Scholar 

  21. Knoers N, Heyden H van der, Oost BA van, Monnens L, Willems J, Ropers HH (1987) Tight linkage between nephrogenic diabetes insipidus and DXS52. Cytogenet Cell Genet 46:640

    Google Scholar 

  22. Knoers N, Heyden H van der, Oost BA van, Monnens L, Willems J, Ropers HH (1988) Linkage of X-linked nephrogenic diabetes insipidus with DXS52, a polymorphic DNA marker. Nephron 50: 187–190

    Google Scholar 

  23. Knoers N, Heyden H van der, Oost BA van, Ropers HH, Monnens L, Willems J (1988) Nephrogenic diabetes insipidus: close linkage with markers from the distal long arm of the human X-chromosome. Hum Genet 80:31–38

    Google Scholar 

  24. Knoers N, Heyden H van der, Oost BA van, Monnens L, Willems J, Ropers HH (1988) Three-point linkage analysis using multiple DNA polymorphic markers in families with X-linked nephrogenic diabetes insipidus. Genomics 4:434–437

    Google Scholar 

  25. Langley JM, Balfe JW, Selander T, Ray PN, Clarke JTR (1991) Autosomal recessive inheritance of vasopressin-resistant diabetes insipidus. Am J Med Genet 38:90–94

    Google Scholar 

  26. Michell RH, Kirk CJ, Billah MM (1979) Hormonal stimulation of phosphatidylinositol breakdown, with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans 7:861–865

    Google Scholar 

  27. Abramow M, Beauwens R, Cogan E (1987) Cellular events in vasopressin action. Kidney Int 32:56–66

    Google Scholar 

  28. Brown D (1989) Membrane recycling and epithelial cell function. Am J Physiol 256:F1-F12

    Google Scholar 

  29. Harris HW, Strange K, Zeidel ML (1991) Current understanding of the cellular biology and molecular structure of the antidiuretic hormone-stimulated water transport pathway. J Clin Invest 88:1–8

    Google Scholar 

  30. Kachadorian WA, Ellis SJ, Muller J (1979) Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder. Am J Physiol 236:F14-F20

    Google Scholar 

  31. Dillingham MA, Dixon BS, Anderson RJ (1987) Calcium modulates vasopressin effect in rabbit cortical collecting tubule. Am J Physiol 252:F115-F121

    Google Scholar 

  32. Taylor A, Eich E, Pearl M, Brem AS, Peeper EQ (1987) Cytosolic calcium and the action of vasopressin in toad urinary bladder. Am J Physiol 252:F1028-F1041

    Google Scholar 

  33. Dillingham MA, Anderson RJ (1986) Inhibition of vasopressin action by atrial natriuretic factor. Science 231:1572–1573

    Google Scholar 

  34. Nonoguchi H, Sands JM, Knepper MA (1988) Atrial natriuretic factor inhibits vasopressin-stimulated osmotic water permeability in rat inner medullary collecting duct. J Clin Invest 82:1383–1390

    Google Scholar 

  35. Lochrie MA, Simon MI (1988) G-protein multiplicity in eukaryotic signal transduction systems. Biochemistry 27:4957–4965

    Google Scholar 

  36. Spiegel AM, Levine MA, Aurbach GD, Downs RW, Marx SJ, Lasker RD, Moses AM, Breslau NA (1982) Deficiency of hormone-receptor-adenylate cyclase coupling protein: basis for hormone resistance in pseudohypoparathyroidism. Am J Physiol 243:E37-E42

    Google Scholar 

  37. Levine MA, Downs RW, Moses AM, Breslau NA, Marx SJ, Lasker RD, Rizzoli RE, Aurbach GD, Spiegel AM (1983) Resistance to multiple hormones in patients with pseudohypoparathyroidism. Association with deficient activity of guanine nucleotide regulatory protein. Am J Med 74:545–556

    Google Scholar 

  38. Naik DV, Valtin H (1969) Hereditary vasopressin-resistant urinary concentration defects in mice. Am J Physiol 217:1183–1190

    Google Scholar 

  39. Jackson BA, Edwards RM, Valtin H, Dousa TP (1980) Cellular action of vasopressin in medullary tubules of mice with hereditary nephrogenic diabetes insipidus. J Clin Invest 66:110–122

    Google Scholar 

  40. Homma S, Gapstur SM, Coffey A, Dousa TP (1991) Role of the cAMP-phosphodiesterase isoenzymes in pathogenesis of murine nephrogenic diabetes insipidus. Am J Physiol 261:F345-F353

    Google Scholar 

  41. Beavo JA (1988) Multiple isoenzymes of cyclic nucleotide phosphodiesterase. Adv Second Messenger Phosphoprotein Res 22: 1–38

    Google Scholar 

  42. Krebs EG (1989) Role of the cyclic AMP-dependent protein kinase in signal transduction. JAMA 262:1815–1818

    Google Scholar 

  43. Lee DC, Carmichael DF, Krebs EG, McKnight GS (1983) Isolation of a cDNA clone for the type I regulatory subunit of bovine cAMP-dependent protein kinase. Proc Natl Acad Sci USA 80:3608–3612

    Google Scholar 

  44. Jahnsen T, Hedin L, Kidd VJ, Beattie WG, Lohmann SM, Walter U, Durica J, Schulz TZ, Schiltz E, Browner M, Lawrence CB, Goldman D, Ratoosh SL, Richards JS (1986) Molecular cloning, cDNA structure, and regulation of the regulatory subunit of type II cAMP-dependent protein kinase from rat ovarian granulosa cells. J Biol Chem 261:12352–12361

    Google Scholar 

  45. Brommer EJP, Brummelen P van, Derkx FHM (1984) Desmopressin and hypotension. Ann Intern Med 103:962

    Google Scholar 

  46. Cash JD, Gader AMA, Da Costa J (1974) The release of plasminogen activator and FVIII by LVP, AVP, DDAVP, ATIII, and OT in man. Br J Haematol 27:363–364

    Google Scholar 

  47. Mannuci PM, Aberg M, Nilsson IM, Robertson B (1975) Mechanism of plasminogen activator and FVIII increase after vasoactive drugs. Br J Haematol 30:81–93

    Google Scholar 

  48. Kobrinski NL, Doyle JJ, Israel EDS, Winter JSD, Cheang MS, Walker RD, Bishop A (1985) Absent factor VIII response to synthetic vasopressin analogue (DDAVP) in nephrogenic diabetes insipidus. Lancet I:1293–1294

    Google Scholar 

  49. Bichet DG, Razi M, Lonergan M, Arthus M-F, Papukna V, Kortas C, Barjon J-N (1988) Hemodynamic and coagulation responses to 1-desamino [8-d-arginine] vasopressin in patients with congenital nephrogenic diabetes insipidus. N Engl J Med 318:881–887

    Google Scholar 

  50. Knoers N, Brommer EJP, Willems H, Oost BA van, Monnens LAH (1990) Fibrinolytic responses to 1-desamino-8-d-arginine vasopressin in patients with congenital nephrogenic diabetes insipidus. Nephron 54:322–326

    Google Scholar 

  51. Knoers N, Monnens LAH (1991) A variant of nephrogenic diabetes insipidus: V2 receptor abnormality restricted to the kidney. Eur J Pediatr 150:370–373

    Google Scholar 

  52. Brenner B, Seligsohn U, Hochberg Z (1988) Normal response of factor VIII and von Willebrand factor to 1-deamino-8-d-arginine vasopressin in nephrogenic diabetes insipidus. J Clin Endocrinol Metab 67:191–193

    Google Scholar 

  53. Moses AM, Miller JL, Levine MA (1988) Two distinct pathophysiological mechanisms in congenital nephrogenic diabetes insipidus. J Clin Endocrinol Metab 66:1259–1264

    Google Scholar 

  54. Ohzeki T, Sanuguchi M, Tsunei M, Shinzawa T, Hanaki K, Shiraki K (1988) Coagulation factor responsiveness in nephrogenic diabetes insipidus. J Pediatr 113:790

    Google Scholar 

  55. Anderson JG, Notmann DD, Springer J (1979) Studies in nephrogenic diabetes insipidus. Clin Res 27:477A

    Google Scholar 

  56. Knoers N, Janssens PMW, Goertz J, Monnens LAH (1991) Evidence for intact V1-vasopressin receptors in congenital nephrogenic diabetes insipidus. Eur J Pediatr (in press)

  57. Jans DA, Oost BA van, Ropers HH, Fahrenholz F (1990) Derivatives of somatic cell hybrids which carry the gene locus for nephrogenic diabetes insipidus (NDI) express functional vasopressin renal V2-type receptors. J Biol Chem 265:15379–15386

    Google Scholar 

  58. Rasher W, Rosendahl W, Henrichs IA, Maier R, Seyberth HW (1987) Congenital nephrogenic diabetes insipidus-vasopressin and prostaglandins in response to treatment with hydrochlorothiazide and indomethacin. Pediatr Nephrol 1:485–490

    Google Scholar 

  59. Libber S, Harrison H, Spector D (1986) Treatment of nephrogenic diabetes insipidus with prostaglandin synthesis inhibitors. J Pediatr 108:305–311

    Google Scholar 

  60. Alon U, Chan JCM (1985) Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus. Am J Nephrol 5:9–13

    Google Scholar 

  61. Knoers N, Monnens LAH (1990) Amiloride-hydrochlorothiazide versus indomethacin-hydrochlorothiazide in the treatment of nephrogenic diabetes insipidus. J Pediatr 117:499–502

    Google Scholar 

  62. Dyckner T, Wester P-O, Widman L (1988) Amiloride prevents thiazide-induced intracellular potassium and magnesium losses. Acta Med Scand 224:25–30

    Google Scholar 

  63. Wilson DR, Honrath U, Sonnenberg H (1988) Interaction of amiloride and hydrochlorothiazide with atrial natriuretic factor in the medullary collecting duct. Can J Physiol Pharmacol 66:648–654

    Google Scholar 

  64. Costanzo LS (1985) Localization of diuretic action in microperfused rat distal tubules: Ca and Na transport. Am J Physiol 248: F527-F535

    Google Scholar 

  65. Ellison DH, Velazquez H, Wright FS (1987) Thiazide-sensitive sodium-chloride contransport in early distal tubule. Am J Physiol 253: F546-F554

    Google Scholar 

  66. Sonnenberg H, Honrath U, Wilson DR (1987) Effects of amiloride in the medullary collecting duct of rat. Kidney Int 31:1121–1125

    Google Scholar 

  67. Velazquez H, Wright FS (1986) Effects of diuretic drugs on Na, Cl, and K transport by rat renal distal tubule. Am J Physiol 250: F1013-F1023

    Google Scholar 

  68. Early LE, Orloff J (1962) The mechanism of antidiuresis associated with the administration of hydrochlorothiazide to patients with vasopressin-resistant nephrogenic diabetes insipidus. J Clin Invest 52: 2418–2427

    Google Scholar 

  69. Ramos G, Rivera A, Pena JC, Dies F (1967) Mechanism of the antidiuretic effect of saluretic drugs. Studies in patients with diabetes insipidus. Clin Pharmacol Ther 8:557–565

    Google Scholar 

  70. Ambrosiono E, Tartagni F, Nacarella F, Magnani B, Ferriri C (1980) Comparison of the effects of amiloride and tiamterene used alone or combined with hydrochlorothiazide. Drug Exp Clin Res 6: 709–712

    Google Scholar 

  71. Ruddle FH (1984) The William Allan memorial award address: reverse genetics and beyond. Am J Hum Genet 36:944–953

    Google Scholar 

  72. Orkin SH (1986) Reverse genetics and human disease. Cell 47: 845–850

    Google Scholar 

  73. Ropers HH (1987) Use of DNA probes for diagnosis and prevention of inherited disorders. Eur J Clin Invest 17:475–487

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoers, N., Monnens, L.A.H. Nephrogenic diabetes insipidus: clinical symptoms, pathogenesis, genetics and treatment. Pediatr Nephrol 6, 476–482 (1992). https://doi.org/10.1007/BF00874020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874020

Key words

Navigation