Skip to main content
Log in

Quantitative in vivo receptor binding IV: Detection of muscarinic receptor down-regulation by equilibrium and by tracer kinetic methods

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Newly-developed methods for estimation of in vivo binding to neurotransmitter receptors should enable the detection and quantification of physiologic or pathologic changes in receptor numbers. In the present study, both equilibrium and kinetic experimental strategies for in vivo muscarinic receptor determination were applied to the detection of receptor changes induced by chronic inhibition of acetylcholinesterase in the rat. Following one week of treatment, in vitro receptor autoradiography utilizing [3H]scopolamine revealed significant losses of muscarinic binding in the cerebral cortex, hippocampus, striatum and in cranial nerve motor nuclei. The in vivo distribution of [3H]scopolamine, following infusion to approach equilibrium binding in the brain, revealed reductions in binding which paralleled the pattern and magnitude of changes detected in vitro. A simplified tracer kinetic estimation following bolus injection of the ligand also detected substantial reductions in forebrain muscarinic receptor binding. These results indicate the feasibility of detecting receptor changes underlying neuropathologic conditions in vivo, and suggest that either equilibrium or kinetic experimental approaches may be extended to clinical research applications with the use of positron or single-photon emission tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Young, A. B., Frey, K. A., and Agranoff, B. W. 1986. Receptor assays: In vitro and in vivo, Pages 73–111,in Phelps, M., Mazziotta, J., and Schelbert, H. (eds.), Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart, Raven Press, New York.

    Google Scholar 

  2. Frey, K. A., Ehrenkaufer, R. L. E., Beaucage, S., and Agranoff, B. W. 1985. Quantitative in vivo receptor binding I. Theory and application to the muscarinic cholinergic receptor. J. Neurosci. 5:421–428.

    Google Scholar 

  3. Frey, K. A., Ehrenkaufer, R. L. E., and Agranoff, B. W. 1985. Quantitative in vivo receptor binding II. Autoradiographic imaging of muscarinic cholinergic receptors. J. Neurosci. 5:2407–2414.

    Google Scholar 

  4. Frey, K. A., Hichwa, R. D., Ehrenkaufer, R. L. E., and Agranoff, B. W. 1985. Quantitative in vivo receptor binding III: Tracer kinetic modeling of muscarinic cholinergic receptor binding. Proc. Natl. Acad. Sci. USA 82:6711–6715.

    Google Scholar 

  5. Pan, H. S., Frey, K. A., Young, A. B., and Penney, Jr., J. B. 1983. Changes in [3H]muscimol binding in substantia nigra, entopeduncular nucleus, globus pallidus, and thalamus after striatal lesions as demonstrated by quantitative receptor autoradiography. J. Neurosci. 3:1189–1198.

    Google Scholar 

  6. Kung, H. F., Tramposch, K. M., and Blau, M. 1983. A new brain perfusion imaging agent: [I-123]HIPDM:N,N,N′-trimethyl-N′-[2-hydroxy-3-methyl-5-iodobenzyl]-1,3-propanediamine. J. Nucl. Med. 24:66–72.

    Google Scholar 

  7. Lucignani, G., Nehlig, A., Blasberg, R., Patlack, C. S., Anderson, L., Fieschi, C., Fazio, F., and Sokoloff, L. 1985. Metabolic and kinetic considerations in the use of [125I]HIPDM for quantitative measurement of regional cerebral blood flow. J. Cereb. Blood Flow Metabol. 5:86–96.

    Google Scholar 

  8. Goldman, H., and Sapirstein, L. A. 1973. Brain blood flow in the conscious and anesthetized rat. Am. J. Physiol. 224:122–126.

    Google Scholar 

  9. Van Uitert, R. L., and Levy, D. E. 1978. Regional brain blood flow in the conscious gerbil. Stroke 9:67–72.

    Google Scholar 

  10. Alexander, G. M., Schwartzman, R. J., Bell, R. D., Yu, J., and Renthal, A. 1981. Quantitative measurement of local cerebral metabolic rate for glucose utilizing tritiated 2-deoxyglucose. Brain Res. 223:59–67.

    Google Scholar 

  11. Herkenham, M., and Sokoloff, L. 1984. Quantitative receptor autoradiography: Tissue defatting eliminates differential self-absorption of tritium radiation in gray and white matter of brain. Brain Res. 321:363–368.

    Google Scholar 

  12. Geary, W. A., II, and Wooten, G. F. 1985. Regional tritium quenching in quantitative autoradiography of the central nervous system. Brain Res. 336:334–336.

    Google Scholar 

  13. Ehlert, F. J., Koka, N., and Fairhurst, A. S. 1979. Altered [3H]-quinuclidinyl benzilate binding in the striatum of rats following chronic cholinesterase inhibition with diisopropylflourophosphate. Mol. Pharmacol. 17:24–30.

    Google Scholar 

  14. McKinney, M., and Coyle, J. T. 1982. Regulation of neocortical muscarinic receptors: effects of drugs treatment and lesions. J. Neurosci. 2:97–105.

    Google Scholar 

  15. Churchill, L., Pazdernik, T. L., Samson, F., and Nelson, S. R. 1984. Topographical distribution of down-regulated muscarinic receptors in rat brains after repeated exposure to diisopropyl phosphorofluoridate. Neuroscience 11:463–472.

    Google Scholar 

  16. Phelps, M. E., Huang, S.-C., Hoffman, E. J., Selin, C., and Kuhl, D. E. 1981. Cerebral extraction of N-13 ammonia: Its dependence on cerebral blood flow and capillary permeability-surface area product. Stroke 12:607–619.

    Google Scholar 

  17. Preskorn, S. H., Hartman, B. K., Raichle, M. E., and Clark, H. B. 1980. The effect of dibenzazapines (tricyclic antidepressants) on cerebral capillary permeability in the rat in vivo. J. Pharmacol. Exp. Ther. 213:313–320.

    Google Scholar 

  18. Preskorn, S. H., Irwin, G. H., Simpson, S., Friesen, D., Rinne, J., and Jerkovich, G. 1981. Medical therapies for mood disorders alter the blood-brain barrier. Science 213:469–471.

    Google Scholar 

  19. Vora, M. M., Finn, R. D., Boothe, T. E., Liskowsky, D. R., and Potter, L. T. 1983. [N-methyl-11C]-scopolamine: Synthesis and distribution in rat brain. J. Labelled Compd. Radiopharm. 20:1229–1236.

    Google Scholar 

  20. Mulholland, G. K., Jewett, D. M., and Toorongian, S. A. 1988. Routine synthesis of N-[11C-methyl]scopolamine by phosphite mediated reductive methylation with [11C]formaldehyde. Appl. Radiat. Isot. 39:373–379.

    Google Scholar 

  21. Frey, K. A., Koeppe, R. A., Mulholland, G. K., Jewett, D., Hichwa, R., Ehrenkaufer, R. L. E., Carey, J. E., Wieland, D. M., Kuhl, D. E., and Agranoff; B. W. 1991. In vivo muscarinic cholinergic receptor imaging in human brain with [11C]scopolamine and positron emission tomography. J. Cereb. Blood Flow Metab. In Press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Louis Sokoloff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, K.A., Ciliax, B. & Agranoff, B.W. Quantitative in vivo receptor binding IV: Detection of muscarinic receptor down-regulation by equilibrium and by tracer kinetic methods. Neurochem Res 16, 1017–1023 (1991). https://doi.org/10.1007/BF00965845

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965845

Key Words

Navigation