Skip to main content
Log in

Desensitization of prostaglandin F receptor-mediated phosphoinositide hydrolysis in cultured rat astrocytes

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Desensitization of prostaglandin (PG) F receptor-mediated phosphoinositide (PI) hydrolysis was investigated in cultured rat astrocytes. Prolonged exposure of astrocytes differentiated by dibutyryl cyclic AMP-treatment to PGF caused the desensitization of subsequent PGF-induced PI hydrolysis. The desensitization was time- and PGF dose-dependent; maximal decrease in the PI hydrolysis was observed after exposure to 10 μM PGF for 4 h and the degree of the desensitization was 31.7±2.7% of control. Pretreatment with either PGD2 or PGE2 also induced the desensitization of subsequent PGF-stimulated PI hydrolysis and conversely pretreatment of PGF decreased the PI responses to PGD2 and PGE2. The desensitization prevented by phloretin and was reversible upon removal of the agonist. Protein synthesis inhibitors blocked the recovery of the desensitization. Treatment of the cells with phorbol 12-myristate 13-acetate had no effect on the desensitization. These results suggest that prolonged exposure of the astrocytes to PGF caused the desensitization of the receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shimizu, T., and Wolfe, L. S. 1990. Arachidonic acid cascade and signal transduction. J. Neurochem. 55:1–15.

    Google Scholar 

  2. Schaad, N. C., Magistretti, P. J., and Schorderet, M. 1991. Prostanoids and their role in cell-cell interactions in the central nervous system. Neurochem. Int. 18:303–322.

    Google Scholar 

  3. Coleman, R. A., Humphrey, P. P. A., Kennedy, I., and Lumley, P. 1984. Prostanoid receptors—the development of a working classification. Trends Pharmacol. Sci. 5:303–306.

    Google Scholar 

  4. Halushka, P. V., Mais, D. E., Mayeux, P. R., and Morinelli, T. A. 1989. Thromboxane, Prostaglandin and leukotriene receptors. Annu. Rev. Pharmacol. Toxicol. 10:213–239.

    Google Scholar 

  5. Sugimoto, Y., Namba, T., Honda, A., Hayashi, Y., Negishi, M., Ichikawa, A., and Narumiya, S. 1992. Cloning and expression of a cDNA for mouse prostaglandin E receptor EP3 subtype. J. Biol. Chem. 267:6463–6466.

    Google Scholar 

  6. Honda, A., Sugimoto, Y., Namba, T., Watabe, A., Irie, A., Negishi, M., Narumiya, S., and Ichikawa, A. 1993. Cloning and expression of a cDNA for mouse prostaglandin E receptor EP2 subtype. J. Biol. Chem. 268:7759–7762.

    Google Scholar 

  7. Kimura, H., Okamoto, K., and Sakai, Y. 1985. Modulatory effects of prostaglandin D2, E2 and F on the postsynaptic actions of inhibitory and excitatory amino acids in cerebellar purkinje cell dendrites in vitro. Brain Res. 330:235–244.

    Google Scholar 

  8. Miwa, N., Sugino, H., Ueno, R., and Hayaishi, O. 1988. Prostaglandin induces Ca2+ influx and cyclic GMP formation in mouse neuroblastoma x rat glioma hybrid NG108-15 cells in culture. J. Neurochem. 50:1418–1424.

    Google Scholar 

  9. Hatanaka, M., Yumoto, N., Miwa, N., Morii, H., Tanemura, M., Ueno, R., Watanabe, Y., and Hayaishi, O. 1989. Late-phase accumulation of inositol phosphates stimulated by prostaglandins D2 and F in neuroblastoma x glioma hybrid NG108-15 cells. J. Neurochem. 53:1450–1455.

    Google Scholar 

  10. Woodward, D. F., Fairbairn, C. E., Goodrum, D. D., Krauss, A. H.-P., Ralston, T. L., and Williams, L. S. 1990. Ca2+ transients evoked by prostaglandins in Swiss 3T3 cells suggest an FP-receptor mediated response. Adv. Prostaglandin Thromboxane Leukotriene Res. 21:367–370.

    Google Scholar 

  11. Evans, T., McCarthy, K. D., and Harden, T. K. 1984. Regulation of cyclic AMP accumulation by peptide hormone receptors in immunocytochemically defined astroglial cells. J. Neurochem. 43: 131–138.

    Google Scholar 

  12. Kitanaka, J., Onoe, H., and Baba, A. 1991. Astrocytes possess prostaglandin F receptors coupled to phospholipase C. Biochem. Biophys. Res. Commun. 178:946–952.

    Google Scholar 

  13. Ito, S., Sugama, K., Inagaki, N., Fukui, H., Giles, H., Wada, H., and Hayaishi O. 1992. Type-1 and type-2 astrocytes are distinct targets for prostaglandins D2, E2, and F. Glia 6:67–74.

    Google Scholar 

  14. Orlicky, D. J., Miller, G. J., and Evans, R. M. 1990. Identification and purification of a bovine corpora luteal membrane glycoprotein with [3H]prostaglandin F2A binding properties. Prostaglandins Leukotrienes and Essential Fatty Acids 41:51–61.

    Google Scholar 

  15. Morii, H., and Watanabe, Y. 1992. A possible role of carbohydrate moieties in prostaglandin D2 and prostaglandin E2 receptor proteins from the porcine temporal cortex. Arch. Biochem. Biophys. 292:121–127.

    Google Scholar 

  16. Morii, H., Tanemura, M., and Watanabe, Y. 1991. Regulation of prostaglandin E2 receptor binding activity in porcine temporal cortex by protein phosphorylation. J. Neurochem. 57:1281–1287.

    Google Scholar 

  17. Kitanaka, J., Ishibashi, T., and Baba, A. 1993. Phloretin as an antagonist ofprostaglandin F receptor in cultured rat astrocytes. J. Neurochem. 60:704–708.

    Google Scholar 

  18. Raff, M. C., Abney, E. R., Cohen, J., Lindsay, R., and Noble, M. 1983. Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J. Neurosci. 3:1289–1300.

    Google Scholar 

  19. McCarthy, K. D., and de Vellis, J. 1980. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85:890–902.

    Google Scholar 

  20. Kitanaka, J. and Baba, A. 1992. Effect of dibutyryl cyclic AMP-treatment on prostaglandin F-stimulated phosphoinositide hydrolysis in cultured rat astrocytes. Jpn. J. Pharmacol. 58:189–192.

    Google Scholar 

  21. Berridge, M. J., Dawnes, C. P., and Hanley, M. R. 1982. Lithium amplifies agonist-dependent phosphatidylinositol response in brain and salivary glands. Biochem. J. 206:587–595.

    Google Scholar 

  22. Pearce, B., Morrow, C., and Murphy, S. 1988. Characteristics of phorbol ester- and agonist-induced down-regulation of astrocyte receptors coupled to inositol phospholipid metabolism. J. Neurochem. 50:936–944.

    Google Scholar 

  23. Pearce, B. and Murphy, S. 1988. Neurotransmitter receptors coupled to inositol phospholipid turnover and Ca2+ flux: Consequences for astrocyte function. Pages 197–221,in Kimelberg, H. K. (ed.), Glial Cell Receptors, Raven Press, New York.

    Google Scholar 

  24. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63.

    Google Scholar 

  25. Lerea, L. S. and McCarthy, K. D. 1989. Astroglial cells in vitro are heterogenous with respect to expression of the α1-adrenergic receptors. Glia 2:135–147.

    Google Scholar 

  26. Xu, J. and Chuang, D.-M. 1987. Muscarinic acetylcholine receptor-mediated phosphoinositide turnover in cultured cerebellar granule cells: Desensitization by receptor agonists. J. Pharmacol. Exp. Ther. 242:238–244.

    Google Scholar 

  27. Kassis, S., Zaremba, T., Patel, J., and Fishman, P. H. 1985. Phorbol esters and β-adrenergic agonists mediate desensitization of adenylate cyclase in rat glioma C6 cells by distinct mechanisms. J. Biol. Chem. 260:8911–8917.

    Google Scholar 

  28. Negishi, M., Sugimoto, Y., Irie, A., Narumiya, S., and Ichikawa, A. 1993. Two isoforms of prostaglandin E receptor EP3 subtype: Different COOH-terminal domains determine sensitivity to agonist-induced desensitization. J. Biol. Chem. 268:9517–9521.

    Google Scholar 

  29. Cooper, B., Schafer, A. I., Puchalsky, D., and Handin, R. I. 1979. Desensitization of prostaglandin-activated platelet adenylate cyclase. Prostaglandins 17:561–571.

    Google Scholar 

  30. Wolfe, L. S., Pappius, H. M., and Marion, J. 1976. The biosynthesis of prostaglandins by brain tissue in vitro. Adv. Prostaglandin Thromboxane Res. 1:345–355.

    Google Scholar 

  31. Ogawa, H., Sasaki, T., Kassell, N. F., Nakagomi, T., Lehman, R. M., and Hongo, K. 1987. Immunohistochemical demonstration of increase in prostaglandin F2-alpha after recirculation in global ischemic rat brains. Acta Neuropathol. 75:62–68.

    Google Scholar 

  32. Petroni, A., Bertazzo, A., Sarti, S., and Galli, C. 1989. Accumulation of arachidonic acid cyclo- and lipoxygenase products in rat brain during ischemia and reperfusion: Effects of treatment with GM1-lactone. J. Neurochem. 53:747–752.

    Google Scholar 

  33. Nishizuka, Y. 1984. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308:693–698.

    Google Scholar 

  34. Huganir, R. L., and Greengard, P. 1990. Regulation of neurotransmitter receptor desensitization by protein phospholylation. Neuron 5:555–567.

    Google Scholar 

  35. Neary, J. T., Norenberg, L. O. B., and Norenberg M. D. 1988. Protein kinase C in primary cultures: Cytosolic localization and translocation by a phorbol ester. J. Neurochem. 50:1179–1184.

    Google Scholar 

  36. Larsson, C., and Simonsson, P. 1993. Desensitization of acetylcholine induced inositol 1,4,5-trisphosphate formation in neuroblastoma SH-SY5Y cells following repetitive acetylcholine stimulations. Neurosci. Lett. 150:141–144.

    Google Scholar 

  37. Lin, W.-W., and Chuang, D.-M. 1993. Agonist-induced desensitization of ATP receptor-mediated phosphoinositide turnover in C6 glioma cells: Comparison with the negative-feedback regulation by protein kinase C. Neurochem. Int. 23:53–60.

    Google Scholar 

  38. Kenimer, J. g., and Nirenberg, M. 1981. Desensitization of adenylate cyclase to prostaglandin E1 or 2-chloroadenosine. Mol. Pharmacol. 20:585–591.

    Google Scholar 

  39. Bristow, D. R., and Zamani, M. R. 1993. Desensitization of histamine H1 receptor-mediated inositol phosphate production in HeLa cells. Brit. J. Pharmacol. 109:353–359.

    Google Scholar 

  40. Lamsa, J. C., Cushman, R. A., Nay, M. G., and McCracken, J. A. 1992. In vivo desensitization of a high affinity PGF receptor in the ovine corpus luteum. Prostaglandins 43:165–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotoh, M., Kitanaka, Ji., Hirasawa, Y. et al. Desensitization of prostaglandin F receptor-mediated phosphoinositide hydrolysis in cultured rat astrocytes. Neurochem Res 19, 679–685 (1994). https://doi.org/10.1007/BF00967706

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00967706

Key Words

Navigation