Skip to main content
Log in

Transition metal-based hydrogen electrodes in alkaline solution — electrocatalysis on nickel based binary alloy coatings

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel-molybdenum, nickel-zinc, nickel-cobalt, nickel-tungsten, nickel-iron and nickel chromium binary alloy codeposits, obtained through electrodeposition methods on mild steel strips, have been characterized with the objective of qualitatively comparing and assessing their electrocatalytic activities as hydrogen electrodes in alkaline solution. It has been concluded that their electrocatalytic effects for the hydrogen evolution reaction rank in the following order: Ni-Mo > Ni-Zn (after leaching Zn in KOH) > Ni-Co > Ni-W > Ni-Fe > Ni-Cr > Ni plated steel. Further investigations on the alloy electrocatalysts have revealed that the cathodic overpotential contribution to the electrolysis voltage can be brought down by 0.3 V when compared with conventional cathodes. The best and most stable hydrogen evolving cathode, based on nickel-molybdenum alloy, exhibited an overpotential of about 0.18 V for over 1500 h of continuous electrolysis in 6m KOH at 300 mA cm−2 and 353 K. The salient features of the coatings, such as physical characteristics, chemical composition, crystal structure of the alloy phases and the varying effects of the catalytic activation method were analysed with a view to correlating the micro-structural characteristics of the coatings with the hydrogen adsorption process. The stability under open-circuit conditions, the tolerance to electrochemical corrosion and the long term stability of nickel-molybdenum alloy cathodes were very encouraging. An attempt to identify the pathway for the hydrogen evolution reaction on these alloy coatings was made, in view of the very low apparent activation energy values obtained experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Arul Raj and V. K. Venkatesan,Int. J. Hydrogen Energy 13 (1988) 215.

    Google Scholar 

  2. ,Trans. SAEST 22 (1987) 189.

    Google Scholar 

  3. I. Arul Raj, K. Venkateswara Rao and V. V. Venkatesan,Bull. Electrochem. 2 (1986) 157.

    Google Scholar 

  4. D. E. Hall, J. M. Sarver and D. O. Gothard,Int. J. Hydrogen Energy 13 (1988) 547.

    Google Scholar 

  5. J. Divesk, P. Malinowski, J. Margel and H. Schmitz,13 (1988) 841.

    Google Scholar 

  6. M. R. Gennero de Chialvo and A. C. Chialvo,Electrochim. Acta 33 (1988) 825.

    Google Scholar 

  7. G. Fiori and C. M. Mari,Int. J. Hydrogen Energy 12 (1987) 159.

    Google Scholar 

  8. M. M. Jaksić,12 (1987) 727.

    Google Scholar 

  9. D. E. Brown, M. N. Mahmood, M. C. M. Man and A. K. Turner,Electrochim. Acta 29 (1984) 1551.

    Google Scholar 

  10. M. B. Janjua and R. L. Le Roy,Int. J. Hydrogen Energy 10 (1985) 11.

    Google Scholar 

  11. A. Brenner, in ‘Electrodeposition of Alloys, Principles and Practice’, Vol. 2, Academic, New York (1963) p. 430.

    Google Scholar 

  12. H. Wendt and V. Plzak,Electrochim. Acta 28 (1983) 27.

    Google Scholar 

  13. E. Beltowska-Lehman and K. Vu Quang,Surf. Coat. Technol. 27 (1986) 75.

    Google Scholar 

  14. C. Karwas and T. Hepel,J. Electrochem. Soc. 135 (1988) 839.

    Google Scholar 

  15. D. E. Hall,128 (1981) 740.

    Google Scholar 

  16. P. W. T. Lu and S. Srinivasan,125 (1978) 265.

    Google Scholar 

  17. B. Tereszko, A. Risenkampf and K. Vu Quang,Surf. Coat. Technol. 12 (1981) 301.

    Google Scholar 

  18. A. T. Wasko, ‘Electrochimia molibdena i wolframa’, Izd. Naukowa Dunka, Kiev (1977).

    Google Scholar 

  19. A. Nidola and R. Schira, in Proceedings of the Symposium Advances in Chlor Alkali and Chlorate Industry (edited by E. M. Spore and M. M. Silver), The Electrochemical Society, Pennington, New York (1984) p. 206.

    Google Scholar 

  20. E. R. Gonzales, L. A. Avaca, A. Carubelli, A. A. Tanaka and G. Tremiliosi-Filho,Int. J. Hydrogen Energy 9 (1984) 689.

    Google Scholar 

  21. D. E. Brown, M. N. Mahmood, A. K. Turner, S. M. Hall and P. O. Fogarty,7 (1982) 405.

    Google Scholar 

  22. B. E. Conway, H. Angerstein-Kozlowska, M. A. Sattar and B. V. Tilak,J. Electrochem. Soc.,130 (1983) 1825.

    Google Scholar 

  23. B. E. Conway and L. Bai,Int. J. Hydrogen Energy 11 (1986) 533.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, I.A., Vasu, K.I. Transition metal-based hydrogen electrodes in alkaline solution — electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem 20, 32–38 (1990). https://doi.org/10.1007/BF01012468

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012468

Keywords

Navigation