Skip to main content
Log in

Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Three statistics (%GC, GC-skew, and AT-skew) can be used to describe the overall patterns of nucleotide composition in DNA sequences. Fourfold degenerate third codon positions from 16 animal mitochondrial genomes were analyzed. The overall composition, as measured by %GC, varies from 3.6 %GC in the honeybee to 47.2 %GC in human mtDNA. Compositional differences between strands of the mitochondrial genome were quantified using the two skew statistics presented in this paper. Strand-specific distribution of bases varies among animal taxa independently of overall %GC. Compositional patterns reflect the substitution process. Description of these patterns may aid in the formation of hypotheses about substitutional mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Google Scholar 

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Google Scholar 

  • Asakawa S, Kumazawa Y, Araki T, Himeno H, Miura K, Watanabe K (1991) Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. J Mol Evol 32:511–520

    Google Scholar 

  • Attardi G, Cantatore P, Chomyn A, Crews S, Gelfand R, Merkel C, Montoya J, Ojala D (1982) A comprehensive view of mitochondrial gene expression in human cells. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 51–71

    Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    Google Scholar 

  • Brown WM (1981) Mechanisms of evolution in animal mitochondrial DNA. Ann NY Acad Sci 361:119–134

    Google Scholar 

  • Brown GG, Simpson MV (1982) Novel features of animal mtDNA evolution as shown by sequences of two rat cytochrome oxidase subunit II genes. Proc Natl Acad Sci USA 79:3246–3250

    Google Scholar 

  • Bulmer M (1985) Neighboring base effects on substitution rates in pseudogenes. Mol Biol Evol 3:322–329

    Google Scholar 

  • Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907

    Google Scholar 

  • Cantatore P, Roberti M, Rainaldi G, Gadaleta MN, Saccone C (1989) The complete nucleotide sequence, gene organization, and genetic code of the mitochondrial genome ofParacentrotus lividus. J Biol Chem 264(19):10965–10975

    Google Scholar 

  • Chang YS, Huang FL, Lo T (1994) The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome. J Mol Evol 38:138–155

    Google Scholar 

  • Clary DO, Wolstenholme D (1985) The mitochondrial molecule ofDrosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271

    Google Scholar 

  • Clayton DA (1992) Transcription and replication of animal mitochondrial DNAs. Int Rev Cytol 141:217–232

    Google Scholar 

  • Crozier RH, Crozier YC (1993) The mitochondrial genome of the honeybeeApis mellifera: complete sequence and genome organization. Genetics 133:97–117

    Google Scholar 

  • De Giorgi C, De Luca F, Saccone C (1991a) Mitochondrial DNA in the sea urchin Arbacia lixula: nucleotide sequence differences between two polymorphic molecules indicate asymmetry of mutations. Gene 103:249–252

    Google Scholar 

  • De Giorgi C, Lanave C, Musci M, Saccone C (1991b) Mitochondrial DNA in the sea urchinArbacia lixula: evolutionary inferences from nucleotide sequence analysis. Mol Biol Evol 8:515–529

    Google Scholar 

  • Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome: a novel gene order in higher vertebrates. J Mol Biol 212:599–634

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Himeno H, Masaki H, Kawai T, Ohta T, Kumagai I, Miura K, Watanabe K (1987) Unusual genetic codes and a novel gene structure for Ser-tRNA-AGY in starfish mitochondrial DNA. Gene 56:219–230

    Google Scholar 

  • Hoffmann RH, Boore JL, Brown WM (1992) A novel mitochondrial genome organization for the blue mussel,Mytilus edulis. Genetics 131:397–412

    Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144

    Google Scholar 

  • Jacobs HT, Elliott DJ, Math VB, Farquharson A (1988) Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol 202:185–217

    Google Scholar 

  • Kocher TD, Wilson AC (1991) Sequence evolution of mitochondrial DNA in humans and chimpanzees: control region and a proteincoding region. In: Osawa S, Honjo T (eds) Evolution of life: fossils, molecules and culture. Springer-Verlag, Tokyo, pp 391–413

    Google Scholar 

  • Kunkel TA (1985) The mutational specificity of DNA polymerasesalpha and -gamma duringin vitro DNA synthesis. J Biol Chem 260:12866–12874

    Google Scholar 

  • Lee W-J, Kocher TD (1995) Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome structure. Genetics 139:873–887

    Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Google Scholar 

  • Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes,Caenorhabditis elegans andAscaris suum. Genetics 130:471–498

    Google Scholar 

  • Saccone C, Lanave C, Pesole G, Sbisa E (1993) Peculiar features and evolution of mitochondrial genome in mammals. In: Di Mauro and Wallace (eds) Mitochondrial DNA in human pathology. Raven Press, New York, pp 27–39

    Google Scholar 

  • Shields DC, Sharp PM (1987) Synonymous codon usage inBacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res 15:8023–8041

    Google Scholar 

  • Sidow A, Thomas WK (1994) A molecular evolutionary framework for eukaryotic model organisms. Curr Biol 4(7):596–603

    Google Scholar 

  • Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657

    Google Scholar 

  • Tzeng C-S, Hui C-F, Shen S-C, Huang PC (1992) The complete nucleotide sequence of theCrossostoma lacustre mitochondrial genome: conservation and variation among vertebrates. Nucleic Acids Res 20:4853–4858

    Google Scholar 

  • Xiong B, Kocher TD (1993) Phylogeny of sibling species of Simulium venustum and S. verecundum (Diptera:Simuliidae) based on sequences of the mitochondrial 16S rRNA gene. Mol Phyl Evol 2:293–303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: T.D. Kocher

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perna, N.T., Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41, 353–358 (1995). https://doi.org/10.1007/BF01215182

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01215182

Key words

Navigation