Skip to main content
Log in

Prokaryotic endosymbionts in the chloroplast stroma of the dinoflagellateWoloszynskia pascheri

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Chloroplasts of the freshwater dinoflagellate,Woloszynskia pascheri, were found to contain small, double membrane-bound bodies that appear to be modified bacteria existing in this organelle as endosymbionts. These “chloroplast endosymbionts” (CESs) contain thin filaments, which observations on thin-sectioned and Feulgen-stained material indicate to be strands of “naked” DNA. They also possess putative prokaryotic-sized ribosomes. The outer of the two membranes that surround a CES may be expanded to form cisternae or tubules, which frequently connect with the outer membrane of adjacent CESs. Considering their appearance in relation to free-living bacteria, and their apparently benign presence in the dinoflagellate host, it is suggested that the CESs have been involved in a symbiotic relationship withW. pascheri for some time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bibby BT, Dodge JD (1974) The fine structure of the chloroplast nucleoid inScrippsiella sweeneyae (Dinophyceae). J Ultrastruct Res 48: 153–161

    PubMed  Google Scholar 

  • Cachon J, Cachon M (1971)Protoodinium chattoni Hovasse. Manifestations ultrastructurales des rapports entre le Peridinien et la Méduse-hôte: fixation, phagocytose. Arch Protistenkd 113: 293–305

    Google Scholar 

  • Dodge JD (1973) The fine structure of algal cells. Academic Press, London

    Google Scholar 

  • — (1979) The phytoflagellates: fine structure and phylogeny. In:Hutner SH, Levandowsky M (eds) Biochemistry and physiology of the protozoa. Academic Press, London

    Google Scholar 

  • Gibbs SP (1978) The chloroplasts ofEuglena may have evolved from symbiotic green algae. Can J Bot 56: 2883–2889

    Google Scholar 

  • — (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361: 193–208

    PubMed  Google Scholar 

  • Gortz H-D (1983) Endonuclear symbionts in ciliates. Int Rev Cytol [Suppl] 14: 145–176

    Google Scholar 

  • Heckmann K (1983) Endosymbionts ofEuplotes. Int Rev Cytol [Suppl] 14: 111–144

    Google Scholar 

  • Herdman M, Stanier RY (1977) The cyanelle: chloroplast or endosymbiotic prokaryote? FEMS Letters 1: 7–12

    Google Scholar 

  • Jeffrey SW, Vesk M (1976) Further evidence for a membrane-bound endosymbiont within the dinoflagellatePeridinium foliaceum. J Phycol 12: 450–455

    Google Scholar 

  • Jeon KW (1983) Integration of bacterial endosymbionts in amoebae. Int Rev Cytol [Suppl] 14: 29–47

    Google Scholar 

  • Kasten FH, Lala R (1975) The Feulgen reaction after glutaraldehyde fixation. Stain Technology 50: 197–201

    PubMed  Google Scholar 

  • Lee RE (1977) Saprophytic and phagocytic isolates of the colourless heterotrophic dinoflagellateGyrodinium lebouriae Herdman. J Mar Biol Assoc UK 57: 303–315

    Google Scholar 

  • Leedale GF (1969) Observations on endonuclear bacteria in euglenoid flagellates. Österr Bot Z 116: 279–294

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. WH Freeman and Company, San Francisco

    Google Scholar 

  • Silva ES (1978) Endonuclear bacteria in two species of dinoflagellates. Protistologica 14: 113–119

    Google Scholar 

  • Spero HJ (1982) Phagotrophy inGymnodinium fungiforme (Pyrrhophyta): The peduncle as an organelle of ingestion. J Phycol 18: 356–360

    Google Scholar 

  • Taylor FJR (1983) Some eco-evolutionary aspects of intracellular symbiosis. Int Rev Cytol [Suppl] 14: 1–28

    Google Scholar 

  • Tomas RN, Cox ER (1973) Observations on the symbiosis ofPeridinium balticum and its intracellular alga I. Ultrastructure. J Phycol 9: 304–323

    Google Scholar 

  • Wedemayer GJ (1982) The peduncle of the dinoflagellateGlenodinium berolinense. First International Phycological Congress. Scientific Programme and Abstracts. a 53.

  • Whatley JM, Whatley FR (1981) Chloroplast evolution. New Phytol 87: 233–247

    Google Scholar 

  • Wilcox LW (1982) Ultrastructural observations on portions of the life cycle ofGymnodinium pascheri (Suchlandt) Schiller. First International Phycological Congress. Scientific Programme and Abstracts. a 54

  • —,Wedemayer GJ (1984)Gymnodinium acidotum Nygaard (Pyrrophyta), a dinoflagellate with an endosymbiotic cryptomonad. J Phycol 20: 236–242

    Google Scholar 

  • — — (1985) A dinoflagellate with blue-green chloroplasts derived from an endosymbiotic cryptomonad. Science 227: 192–194

    Google Scholar 

  • — —,Graham LE (1982)Amphidinium cryophilum sp. nov. (Dinophyceae). A new freshwater dinoflagellate. II. Ultrastructure. J Phycol 18: 18–30

    Google Scholar 

  • Wujek DE (1979) Intracellular bacteria in the blue-green algaPleurocapsa minor. Trans Am Micros Soc 98: 143–145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilcox, L.W. Prokaryotic endosymbionts in the chloroplast stroma of the dinoflagellateWoloszynskia pascheri . Protoplasma 135, 71–79 (1986). https://doi.org/10.1007/BF01277000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01277000

Keywords

Navigation