Skip to main content
Log in

Causes and consequences of the loss of serotonergic presynapses elicited by the consumption of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) and its congeners

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The massive and prolonged stimulation of serotonin (5-HT)-release and the increased dopaminergic activity are responsible for the acute psychomimetic and psychostimulatory effects of 3,4-methylenedioxy-methamphetamine (MDMA, “ecstasy”) and its congeners. In vulnerable subjects, at high doses or repeated use, and under certain unfavorable conditions (crowding, high ambient temperature), severe, in some cases fatal, averse systemic reactions (hyperthermia, serotonin-syndrome) may occur during the first few hours. Animal experiments revealed the existence of similar differences in vulnerability and similar dose- and context-related influences on a similar sequence of acute responses. The severity of these acute systemic responses is closely related to the severity of the long-term damage to 5-HT axon terminals caused by the administration of substituted amphetamines. Attempts to identify the mechanisms involved in this selective degeneration of 5-HT presynapses brought to light a multitude of different factors and conditions which either attenuate or potentiate the loss of 5-HT terminals caused by MDMA and related amphetamine derivatives. These puzzling observations suggest that the degeneration of 5-HT presynapses represents only the final step in a sequence of events which compromize the ability of 5-HT terminals to maintain their functional and structural integrity. The common feature of all these events is a profound wastage of energy. Substituted amphetamines selectively tax energy metabolism in 5-HT presynapses through their ability to exchange with 5-HT and to dissipate transmembrane ion gradients. The active carrier systems in the vesicular and presynaptic membrane operate at a permanently activated state. The resulting energy deficit can no longer adequately restored by the 5-HT presynapses when their availability of substrates for ATP production is additionally reduced by the hyperthermic and other energy consuming reactions which are elicited by the systemic administration of substituted amphetamines. The exhaustion of energy in 5-HT nerve terminals compromizes all energy-requiring endogenous mechanisms involved in the regulation of transmembrane-ion exchange, internal Ca++-homeostasis, prevention of oxidative stress, detoxification, and repair. Above a critical threshold the failure of these self-protective mechanisms will lead to the degeneration of the 5-HT axon terminals.

Based on the role of 5-HT as a global modulatory transmitter-system involved in the stabilization and integration of impulse flow between distributed multifocal neuronal networks, the partial loss of 5-HT presynapses must be expected to impair the ability of these networks to maintain the integrity of signal flow pattern, and increase the likelihood of switching to unstable information processing. Behavioral responding may therefore become more dominated by activities generated in individual networks, and hitherto “buffered” personality traits and predisposition may become manifested as defined psychiatric syndromes in certain predisposed subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MDA :

3,4-methylenedioxyamphetamine

5-HT :

serotonin

DA :

dopamine

MDE :

3,4-methylenedioxy-N-ethylamphetamine

MDMA :

3,4 methylene-dioxymethamphetamine

PCA :

para-chloroamphetamine

References

  • Agrew H, Reibring L (1994) PET-studies of presynaptic monoamine metabolism in depressed patients and healthy volunteers. Pharmacopsychiat 27: 2–6

    Google Scholar 

  • Allen RP, McCann UD, Ricaurte GA (1993) Persistent effects of (+)-3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) on human sleep. Sleep 16: 560–564

    PubMed  Google Scholar 

  • Ames D, Wirshin WC (1993) Ecstasy, the serotonin syndrome and neuroleptic malignant syndrome — a possible link? JAMA 269: 869

    PubMed  Google Scholar 

  • Axt KJ, Molliver ME (1991) Immunocytochemical evidence for methamphetamineinduced serotonergic axon loss in the rat-brain. Synapse 9: 302–313

    PubMed  Google Scholar 

  • Axt KJ, Commins DL, Vosmer G, Seiden LS (1990) α-methyl-p-tyrosine pretreatment partially prevents methamphetamine-induced endogenous neurotoxin formation. Brain Res 515: 269–276

    PubMed  Google Scholar 

  • Azmitia EC, Whitaker-Azmitia PM (1991) Awakening the sleeping giant; anatomy and plasticity of the brain serotonergic system. J Clin Psychiatry 52: 4–16

    Google Scholar 

  • Azmitia EC, Frankfurt M, Davila M, Whitaker-Azmitia PM, Zhou F (1990a) Plasticity of fetal and adult CNS serotonergic neurons: role of growth-regulatory factors. Ann NY Acad Sci 600: 342–365

    Google Scholar 

  • Azmitia EC, Murphy RB, Whitaker-Azmitia EC (1990b) MDMA (Ecstasy) effects on cultured serotonergic neurons: evidence for Ca2+-dependent toxicity linked to release. Brain Res 510: 97–103

    PubMed  Google Scholar 

  • Battaglia G, Yeh SY, O'Hearn E, Molliver ME, Kuhar MJ, De Souza EB (1987) 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin termins in rat brain: quantification of neurodegeneration by measurements of [3H]-paroxetine-labelled serotonin uptake sites. J Pharmacol Exp Ther 242: 911–916

    PubMed  Google Scholar 

  • Battaglia G, Brooks BP, Kulsakdinun C, De Souza EB (1988) Pharmacologic profile of MDMA (3,4-methylenedioxy-methamphetamine) at various brain recognition sites. Eur J Pharmacol 149: 159–163

    PubMed  Google Scholar 

  • Battaglia G, Sharkey J, Kuhar MJ, De Souza EB (1991) Neuroanatomic specificity and time course of alterations in rat brain serotonergic pathways induced by MDMA (3,4-methylenedioxymethamphetamine): assessment using quantitativ autoradiography. Synapse 8: 249–260

    PubMed  Google Scholar 

  • Bedford-Russel AR, Schwartz RH, Dawling S (1992) Accidental igestion “ecstasy” (3,4-methylenedioxymethamphetamine). Arch Dis Child 67: 1114–1115

    PubMed  Google Scholar 

  • Berger UV, Grzanna R, Molliver ME (1989) Depletion of serotonin using p-chlorophenylalanine (PCPA) and reserpine protects against the neurotoxic effects of p-chloroamphetamine (PCA) in the brain. Exp Neurol 103: 111–115

    PubMed  Google Scholar 

  • Berger UV, Grzanna R, Molliver ME (1990) Unlike systemic administration of PCA, direct intracerebral injection does not cause neurotoxicity on 5-HT axons. Exp Neurol 109: 257–268

    PubMed  Google Scholar 

  • Berger UV, Grzanna R, Molliver ME (1992a) The neurotoxic effects of p-chloroamphetamine in rat brain are blocked by prior depletetion of serotonin. Brain Res 578: 177–185

    PubMed  Google Scholar 

  • Berger UV, Gu XF, Azmitia EC (1992b) The substitued amphetamines 3,4-methylenedioxymethampethamine, methamphetamine, para-chloroamphetamine and fenfluramine induce 5-hydroxytryptamine relase via a common mechanism blocked by fluoxetine and cocaine. Eur J Pharmacol 215: 153–160

    PubMed  Google Scholar 

  • Bowyer JV, Davies DL, Schmued L (1994) Further studies of the role of hyperthermia in methamphetamine neurotoxicity. J Pharmacol Exp Ther 286: 1571–1580

    Google Scholar 

  • Bradberry CW, Sprouse JS, Aghajanian GK, Roth RH (1990) 3,4-MDMA-induced release of endogenous serotonin from the rat dorsal raphe nucleus in vitro: effects of fluoxetine and tryptophan. Neurochem Int 17: 509–513

    Google Scholar 

  • Brodkin J, Malyala A, Nash JF (1993) Effect of acute monoamine depletion on 3,4-methylenedioxymethamphetamine-induced neurotoxicity. Pharmacol Biochem Behav 45: 647–653

    PubMed  Google Scholar 

  • Broening HW, Bacon L, Slikker W jr (1994) Age modulates the long-term but not the acute effects of the serotonergic neurotoxicant 3,4-methylenediamphetamine. J Pharmacol Exp Ther 271: 285–293

    PubMed  Google Scholar 

  • Brown C, Osterloh J (1987) Multiple severe complications from recreational ingestion of MDMA (“Ecstasy”). J Am Med Assoc 258: 780–781

    Google Scholar 

  • Brückner G, Biesold D (1981) Histochemistry of glycogen deposition in perinatal rat brain: importance of radial glial cells. J Neurocytol 10: 749–757

    PubMed  Google Scholar 

  • Chadwick IS, Linsley A, Freemont AJ, Doran B, Curry PD (1991) Ecstasy, 3,4-methylenedioxymethamphetamine (MDMA), a fataly associated with coagulopathy and hyperthermia. J Roy Soc Med 84: 371

    Google Scholar 

  • Cheng L, Hamaguchi K, Ogawa M, Hamada S, Okado N (1994) pCPA reduces both monoaminergic afferents and non-monoaminergic synapses in the cerebral cortex. Neurosci Res 19: 111–115

    PubMed  Google Scholar 

  • Choi DW (1988) Calcium mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11: 465–469

    PubMed  Google Scholar 

  • Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13: 171–182

    PubMed  Google Scholar 

  • Chu T, Kumagain Y, DiStefano EW, Cho AK (1996) Disposition of methylenedioxy-methamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion. Biochem Pharmacol 51: 789–796

    PubMed  Google Scholar 

  • Clemens JA, Fuller RW, Perry KW, Sawyer BD (1978) Effects of p-chloroamphetamine on brain serotonin in immature rats. Comm Psychopharmacol 2: 11–16

    Google Scholar 

  • Cohen RS (1995) Subjective reports on the effects of the MDMA (“ecstasy”) experience in humans. Progr Neuropsychopharmacol Biol Psychiatry 19: 1137–1145

    Google Scholar 

  • Colado MI, Green AR (1994) A study of the mechanism of MDMA (“Ecstasy”)-induced neurotoxicity of 5-HT neurones using chlormethiazole, dizocilpine and other protective compunds. Br J Pharmacol 111: 131

    PubMed  Google Scholar 

  • Colado MJ, Green AR (1995) The spin trap reagent α-phenyl-N-tert-butyl nitrone prevents “ecstasy”-induced neurodegeneration of 5-hydroxytryptamine neurons. Eur J Pharmacol 280: 343–346

    PubMed  Google Scholar 

  • Colado MI, Murray TK, Green AR (1993) 5-HT loss in rat brain following 3,4-methylenedioxymethamphetamine (MDMA), p-chloroamphetamine and fenfluramine administration and effects of chlormethiazole and dizocilpine. Br J Pharmacol 108: 583–589

    PubMed  Google Scholar 

  • Colado MI, Williams JL, Green AR (1995) The hyperthermic and neurotoxic effects of “Ecstasy” (MDMA) and 3,4-methylenedioxyamphetamine (MDA) in the Dark Agouti (DA) rat, a model of the CYP2D6 poor metaboliser phenotype. Br J Pharmacol 115: 1281–1289

    PubMed  Google Scholar 

  • Commins DL, Axt KJ, Vosmer G, Seiden LS (1987) Endogenously produced 5,6-DHT may mediate the neurotoxic effects of para-chloroamphetamine. Brain Res 419: L253–261

    Google Scholar 

  • Dafters RI (1994) Effects of ambient temperature on hyperthermia and hyperkinesis induced by 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) in rats. Psychopharmacology 114: 505–508

    PubMed  Google Scholar 

  • Dafters RJ (1995) Hyperthermia following MDMA administration in rats: effects of ambient temperature, water consumption, and chronic dosing. Physiol Behav 58: 877–882

    PubMed  Google Scholar 

  • De Erasquin G, Manev H, Guidotti A, Costa E, Brooker G (1990) Gangliosides normalize distorted single-cell intracellular free Ca++ dynamics after toxic doses of glutamate in cerebellar granule cells. Proc Natl Acad Sci USA 87: 8017–8021

    PubMed  Google Scholar 

  • De Vito M, Wagner GC (1989) Methamphetamine-induced neuronal damage: a possible role for free radicals. Neuropharmacology 28: 1145–1150

    PubMed  Google Scholar 

  • Dowling GB, McDonough ET, Bost RO (1987) Eve and Ecstasy, a report of five deaths associated with the use of MDEA and MDMA. JAMA 257: 1615–1617

    PubMed  Google Scholar 

  • Eyre JA, Stuart AG, Forsyth Jr, Heaviside D, Bartlett K (1994) Glucose export from the brain in man: evidence for a role of astrocytic glycogen as a reservoir of glucose for neural metabolism. Brain Res 635: 349–352

    PubMed  Google Scholar 

  • Fahal IH, Sallomi DF, Yaqoob M, Bell GM (1992) Acute renal failure after ecstasy. BMJ 305: 29

    Google Scholar 

  • Finnegan KT, Skratt JJÖ, Irwin I, Langston JW (1990) The N-methyl-D-aspartate (NMDA) receptor antagonist dextromethorphan prevents the neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats. Neurosci Lett 105: 300–306

    Google Scholar 

  • Friedman R (1993) Ecstasy, the serotonin syndrome and neuroleptic malignant syndrome - a possible link? JAMA 269: 869–870

    PubMed  Google Scholar 

  • Fuller RW (1980) Mechanisms by which uptake inhibitors antagonize p-chloroamphetamine-induced depletion of brain serotonin. Neurochem Res 5: 241–253

    PubMed  Google Scholar 

  • Fuller RW (1992) Effects of p-chloroamphetamine on brain serotonin neurons. Neurochem Res 17: 449–456

    PubMed  Google Scholar 

  • Gibb JW, Johnson M, Stone D, Hanson GR (1990) MDMA: historical perspectives. Ann NY Acad Sci 600: 601–611

    PubMed  Google Scholar 

  • Gledhill JA, Moore DF, Bell D, Henry JA (1993) Subarachnoid haemorrhage associated with MDMA abuse. J Neurol Neurosurg Psychiatry 56: 1036–1037

    PubMed  Google Scholar 

  • Gordon CJ, Wilkinson WP, O'Callaghan JP, Miller DB (1991) Effect of 3,4-methylenedioxymethamphetamine on autonomic thermoregulatory responses of the rat. Pharmacol Biochem Behav 38: 339–344

    PubMed  Google Scholar 

  • Grahame-Smith DG (1971) Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with monoamine oxidase inhibitor and L-tryptophan. J Neurochem 18: 1053–1066

    PubMed  Google Scholar 

  • Green AR, Heal DH (1985) The effects of drugs on serotonin-mediated behavioural models. In: Green AR (ed) Neuropharmacology of serotonin. Oxford University Press, pp 326–365

  • Green AR, Goodwin GM (1996) Ecstasy and neurodegeneration. Br Med J 312: 1493

    Google Scholar 

  • Green AR, De Souza RJ, Williams JL, Murray TK, Cross AJ (1992) The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: evidence for the protective effect of chlormethiazole. Neuropharmacol 31: 315–321

    PubMed  Google Scholar 

  • Green AR, Cross AJ, Goodwin GM (1995) Review of the pharmacology and clinical pharmacology of MDMA. Psychopharmacology 119: 247–260

    PubMed  Google Scholar 

  • Greer G, Tolbert R (1986) Subjective reports of the effects of MDMA in a clinical setting. J Psychoact Drugs 18: 319–327

    Google Scholar 

  • Gu XF, Azmitia EC (1993) Integrative transporter-mediated release from cytoplasmic and vesicular 5-hydroxytryptamine stores in cultured neurons. Eur J Pharmacol 235: 51–57

    PubMed  Google Scholar 

  • Gudelsky GA (1996) Effect of ascorbate and cysteine on the 3,4-methylenedioxy-methamphetamine-induced depletion of brain serotonin. J Neural Transm 103: 1397–1404

    PubMed  Google Scholar 

  • Gudelsky GA, Nash JF (1996) Carrier-mediated release of serotonin by 3,4-methylenedioxymethamphetamine: implications for serotonin-dopamine interactions. J Neurochem 66: 243–249

    PubMed  Google Scholar 

  • Gudelksy GA, Yamamoto BK, Nash JF (1994) Potentiation of 3,4-methylenedioxy-methamphetamme-induced dopamine release and serotonin neurotoxicity by 5-HT2 agonists. Eur J Pharmacol 264: 325–330

    PubMed  Google Scholar 

  • Habert E, Graham D, Tahraoui L, Claustre Y, Langer SZ (1985) Characterization of [3H]-paroxetine binding to rat cortical membranes. Eur J Pharmacol 118: 107–114

    PubMed  Google Scholar 

  • Hardman HF, Haavik CO, Seevers MH (1973) Relationship of the strsucture of mescaline and seven analogs to toxicity and behaviour in five species of laboratory animals. Toxicol Appl Pharmacol 25: 299–309

    PubMed  Google Scholar 

  • Harries DP, DeSilva R (1992) Ecstasy and intracerebral haemorrhage. Scot Med J 37: 150–152

    PubMed  Google Scholar 

  • Harvey JA, McMaster SE (1975) Fenfluramine: evidence for a neurotoxic action in midbrain and a long term depletion of serotonin. Pharmacol Commun 1: 217–228

    Google Scholar 

  • Harvey JA, McMaster SE, Romano AG (1993) Methylenedioxyamphetamine: neurotoxic effects of serotonergic projections to brainstem nuclei in the rat. Brain Res 619: 1–14

    PubMed  Google Scholar 

  • Hekmatpanah CR, Peroutka SK (1990) 5-Hydroxytryptamine uptake blockers attenuate the 5-hydroxytryptamine releasing effect of 3,4-methylenedioxymethamphetamine and related agents. Eur J Pharmacol 177: 95–98

    PubMed  Google Scholar 

  • Henry JA (1996) Ecstasy and serotonin depletion. Lancet 347: 833

    Google Scholar 

  • Henry JA, Jeffreys KJ, Dawling KS (1992) Toxicity and deaths from 3,4-methylenedioxyamphetamine (“ecstasy”). Lancet 340: 384–387

    PubMed  Google Scholar 

  • Hewitt KE, Green AR (1994) Chlormethiazole, dizocilpine and haloperidol prevent the degeneration of serotonergic nerve terminals induced by administration of MDMA (“Ecstasy”). Neuropharmacology 33: 1589–1595

    PubMed  Google Scholar 

  • Hirata H, Ladenheim B, Rothman RB, Epstein C, Gated JL (1995) Methamphetamineinduced serotonin neurotoxicity is mediated by Superoxide radicals. Brain Res 677: 345–347

    PubMed  Google Scholar 

  • Hotchkiss A, Gibb JW (1980) Long term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase in rat brain. J Pharmacol Exp Ther 214: 257–262

    PubMed  Google Scholar 

  • Hothershall JS, Greenbaum AL, McLean P (1982) The functional significance of the pentose phosphate pathway in synaptosomes: protection against peroxidative damage by catecholamines and oxidants. J Neurochem 39: 1325–1332

    PubMed  Google Scholar 

  • Insel TR, Battaglia G, Johanssen J, Marra S, De Souza EB (1989) 3,4-Methylenedioxymethamphetamine (“Ecstasy”) selectively destroys brain serotonin nerve terminals rhesus monkeys. J Pharmacol Exp Ther 249: 713–720

    PubMed  Google Scholar 

  • Lyer RN, Sprouse JS, Aghajanian GK, Roth RH, Bradberry CW (1994) Tryptophan pretreatment augmentation of p-chloroamphetamine-incuded serotonine and dopamine release and reduction of long-term neurotoxicity. Biochem Pharmacol 48: 1501–1508

    PubMed  Google Scholar 

  • Jacobs BL, Fornal CA (1991) Activity of brain serotonergic neurons in the behaving animal. Pharmacol Rev 43: 563–578

    PubMed  Google Scholar 

  • Jacobs BL, Azmitia E (1992) Structure and function of the brain serotonin system. Physiol Rev 72: 165–229

    PubMed  Google Scholar 

  • Jacobs BL, Wilkinson LO, Fornal CA (1990) The role of brain serotonin. A neurophysiologic perspective. Neuropsychopharmacology 3: 473–479

    PubMed  Google Scholar 

  • Johnson MP, Elayan I, Hanson GR, Foltz RL, Gibb JW, Lim HK (1992) Effects of 3,4-dihydroxymethamphetamine and 2,4,5-trihydroxymethamphetamine, on central serotonergic and dopaminergic systems. J Pharmacol Exp Ther 261: 447–453

    PubMed  Google Scholar 

  • Johnson MP, Conarty PF, Nichols DE (1993) [3H]-Monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur J Pharmacol 200: 9–16

    Google Scholar 

  • Kapur S, Meyer J, Wilson AA, Houle S, Brown GM (1994) Modulation of cortical neuronal activity by a serotonergic agent: a PET study in humans. Brain Res 646: 292–294

    PubMed  Google Scholar 

  • Karoum F, Chrapusta SJ, Egan MF, Wyatt RJ (1993) Absence of 6-hydroxydopamine in the rat brain after treatment with stimulants and other dopaminergic agents: a mass fragmentographic study. J Neurochem 61: 1369–1375

    PubMed  Google Scholar 

  • Kramer K, Poblete JCP, Azmitia EC (1995) 3,4-Methylenedioxymethamphetamine (“Ecstasy”) promotes the translocation of protein kinase C (PKC): requirement of viable serotonin nerve terminals. Brain Res 680: 1–8

    PubMed  Google Scholar 

  • Kuikka JT, Tiihonen J, Bergström KA, Karhu J, Hartikainen P, Viinamäki H, Länsimies E, Lehtonen J, Hakola P (1985) Imaging of serotonin and dopamine transporters in the living human brain. Eur J Nucl Med 22: 346–350

    Google Scholar 

  • Lauder JM (1990) Ontogeny of the serotonergic system in the rat: serotonin as developmental signal. Ann NY Acad Sci 600: 287–314

    Google Scholar 

  • Lucot JB, Horwitz J, Seiden LS (1981) The effects of p-chloramphetamine administration on locomotor activity and serotonin in neonatal and adult rats. J Pharmacol Exp Ther 217: 738–744

    PubMed  Google Scholar 

  • Mamounas LA, Müllen CA, Ohearn E, Molliver ME (1991) Dual serotoninergic projections to forebrain in the rat — morphologically distinct 5-HT axon terminals exhibit differential vulnerability to neurotoxic amphetamine derivatives. J Comp Neurol 314: 558–586

    PubMed  Google Scholar 

  • Mann JJ, Malone KM, Diel DJ, Perel J, Cooper TB, Mintum MA (1996) Demonstration in vivo of reduced serotonin responsitivity in the brain of untreated depressed patients. Am J Psychiatry 153: 174–182

    PubMed  Google Scholar 

  • Marker H, Weiss C, Silides DJ, Cohen G (1981) Coupling of dopamine oxidation to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J Neurochem 36: 589–593

    PubMed  Google Scholar 

  • McCann UD, Ricaurte GA (1991a) Lasting neuropsychiatric sequelae of (+)- melthylenedioxymethamphetamine (“Ecstasy”) in recreational users. J Clin Psychopharmacol 11: 302–305

    PubMed  Google Scholar 

  • McCann UD, Ricaurte GA (1991b) Major metabolites of 3,4-methylenedioxy-methamphetamine do not mediate its toxic effects on brain serotonin neurons. Brain Res 545: 279–282

    PubMed  Google Scholar 

  • McGuire PK, Cope H, Fahy TA (1994) Diversity of psychopathology associated with use of 3,4-methylenedioxymethamphetamine (“Ecstasy”). Br J Psychiatry 165: 391–395

    PubMed  Google Scholar 

  • Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language and memory. Ann Neurol 28: 597–613

    PubMed  Google Scholar 

  • Meyer JH, Kapur S, Wilson AA, DaSilva JN, Houle S, Brown GM (1996) Neuromodulation of frontal and temporal cortex by intravenous d-fenfluramine: An [15O]H2O PET study in humans. Neurosci Lett 207: 25–28

    PubMed  Google Scholar 

  • Miller DB, O'Callaghan JP (1994) Environment and stress-induced alterations in body temperature affect of the neurotoxicity of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270: 752–760

    PubMed  Google Scholar 

  • Molliver ME, Berger UV, Mamounas LA, Molliver DL, O'Hearn E, Wilson MA (1990) Neurotoxicity of MDMA and related compunds: anatomic studies. Ann NY Acad Sci 600: 640–661

    Google Scholar 

  • Nash JF (1990) Ketanserin pretreatment blocks MDMA-induced dopamine release in the striatum as measured by in vivo microdialysis. Life Sci 47: 2401–2408

    PubMed  Google Scholar 

  • Nash JF, Brodkin J (1991) Microdialysis studies on 3,4-methylenedioxy-methamphetamine induced dopamine release: effect of dopamine uptake inhibitors. J Pharmacol Exp Ther 259: 820–825

    PubMed  Google Scholar 

  • Nichols DE (1986) Differences between the mechanisms of action of MDMA, MBDB, and the classic hallucinogens. Identification of a novel therapeutic class: entactogens. J Psychoact Drugs 18: 305–313

    Google Scholar 

  • Nichols DE, Lloyd DH, Huffman AJ, Nichols MB, Yim GKW (1982) Effects of certain hallucinogenic amphetamine analogues on the release of [3H]serotonin from rat brain synaptosomes. J Med Chem 25: 530–535

    PubMed  Google Scholar 

  • O'Hearn E, Battaglia G, De Souza EB, Kuhar MJ, Molliver ME (1988) Methylenedioxy-amphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci 8: 2788–2803

    PubMed  Google Scholar 

  • Odell SJ, Weihmuller FB, Marshall JF (1991) Multiple methamphetamine injections induce marked increases in extracellular striatal dopamine which correlate with subsequent neurotoxicity. Brain Res 564: 256–260

    PubMed  Google Scholar 

  • Okado N, Cheng L, Tanatsugu Y, Hamada S, Hamaguchi K (1993) Synaptic loss following removal of serotonergic fibers in newly hatched and adult chickens. J Neurobiol 24: 687–698

    PubMed  Google Scholar 

  • Paris JM, 'Cunningham KA (1992) Lack of serotonin neurotoxicity after intraraphe microinjection of (+)-3,4methylenedioxymethamphetamine. Brain Res Bull 28: 115–119

    PubMed  Google Scholar 

  • Park WP, Azmitia EC (1991) MDMA (ecstasy) and nimodipine effects on45Ca++-uptake into rat brain synaptosomes. Ann NY Acad Sci 635: 438–442

    PubMed  Google Scholar 

  • Passoneau JV, Lauderdale VR (1974) A comparison of three methods of glycogen measurement in tissues. Anal Biochem 60: 405–412

    PubMed  Google Scholar 

  • Pentreath VW, Seal LH, Morrison JH, Magistretti PJ (1986) Transmitter mediated regulation of energy metabolism in nervous tissue at the cellular level. Neurochem Int 9: 1–10

    Google Scholar 

  • Peroutka SJ (1987) Incidence of recreational use of 3,4-methylenedioxy-methamphetamine (MDMA, Ecstasy) on an undergraduate campus. N Engl J Med 317: 1542–1543

    Google Scholar 

  • Peroutka SJ, Newman H, Harris H (1988) Subjective effects of 3,4-methylenedioxymethamphetamine in recreational users. Neuropsychopharmacology 1: 273–278

    PubMed  Google Scholar 

  • Pierce PA, Peroutka SJ (1988) Ring-substituted amphetamine interactions with neurotransmitter receptor binding sites in human cortex. Neurosci Lett 92: 208–212

    Google Scholar 

  • Pierce PA, Peroutka SJ (1989) Hallucinogenic drug interactions with neurotransmitter receptor binding sites in human cortex. Psychopharmacol 97: 118–122

    Google Scholar 

  • Poblete JC, Azmitia EC (1995) Activation of glycogen phosphorylase by serotonin 3,4-methylenedioxymethamphetamine in astroglial-rich primary cultures: involvement of the 5-HT2A-receptor. Brain Res 680: 9–15

    PubMed  Google Scholar 

  • Price LP, Ricaurte GA, Krystal JH, Heninger GR (1989) Neuroendocrine and mood response to L-tryptophan in 3,4-methylenedioxymethamphetamine (MDMA) users. Arch Gen Psychiatry 46: 20–22

    PubMed  Google Scholar 

  • Rhoades RW, Bennett Clarke CA, Chiaia NL, White FA, Macdonald GJ, Haring JM, Jacquin MF (1990) Development and lesion induced reorganization of the cortical representation of the rat's body surface as revealed by immunocytochemistry for serotonin. J Comp Neurol 293: 190–207

    Google Scholar 

  • Ricaurte GA, McCann UD (1992) Neurotoxic amphetamine analogues: effects in monkeys and implications for humans. Ann NY Acad Sci 684: 371–382

    Google Scholar 

  • Ricaurte G, Bryan G, Strauss L, Seiden L, Schuster C (1985) Hallucinogenic amphetamine selectively destroys brain serotonin terminals. Science 229: 986–988

    PubMed  Google Scholar 

  • Ricaurte GA, Delanney LE, Irwin I, Längston JW (1988a) Toxic effects of MDMA on central serotonergic neurons in the primate: importance of route and frequency of drug adminsitration. Brain Res 446: 165–168

    PubMed  Google Scholar 

  • Ricaurte GA, Forno LS, Wilson MA, De Lanney LE, Irwin I, Molliver ME, Langston JW (1988b) MDMA selectively damages central serotonergic neurons in the primate. JAMA 260: 51–55

    PubMed  Google Scholar 

  • Ricaurte GA, Finnegan KT, Irwin I, Langston JW (1990) Aminergic metabolites in cerebrospinal fluid of humans previously exposed to MDMA: preliminary observations. Ann NY Acad Sci 600: 699–710

    PubMed  Google Scholar 

  • Ricaurte GA, Molliver ME, Martello MB, Katz JL, Wilson MA, Martello AL (1991) Dexfenfluramine neurotoxicity in brains of non-human primates. Lancet 338: 1487–1488

    PubMed  Google Scholar 

  • Rudnick G, Wall SC (1992) The molecular mechanisms of ecstasy [3,4-methylenedioxyamphetamine (MDMA)]. Serotonin transporters are targets for MDMA-induced serotonin release. Proc Natl Acad Sci USA 89: 1817–1821

    PubMed  Google Scholar 

  • Sanders-Bush E, Bushing JA, Sulser F (1972) p-Chloroamphetamine-inhibition of cerebral tryptophan hydroxylase. Biochem Pharmacol 21: 1501–1510

    PubMed  Google Scholar 

  • Schmidt CJ (1987) Neurotoxicity of the psychedelic amphetamine, methylenedioxmethylamphetamine. J Pharmacol Exp Ther 240: 1–7

    PubMed  Google Scholar 

  • Schmidt CJ, Ritter JK, Sonsalla PK, Hanson GR, Gibb JW (1985) Role of dopamine in the neurotoxic effects of methamphetamine. J Pharmacol Exp Ther 233: 539–544

    PubMed  Google Scholar 

  • Schmidt CJ, Black CK, Abbate GM, Taylor VL (1990a) Chloral hydrate anesthesia antagonizes the neurotoxicity of MDMA. Eur J Pharmacol 191: 213–218

    PubMed  Google Scholar 

  • Schmidt CJ, Black CK, Abbate GM, Taylor VL (1990b) MDMA-induced hyperthermia and neurotoxicity are independently mediated by 5-HT2-receptors. Brain Res 529: 85–90

    PubMed  Google Scholar 

  • Schmidt CJ, Taylor VL, Abbate GM, Nieduzak TR (1991) 5-HT2-antagonists steroselectively prevent the neurotoxicity of 3,4-methylenedioxymethamphetamine, p-chloroamphetamine or methamphetamine to rats. Eur J Pharmacol 203: 41–49

    PubMed  Google Scholar 

  • Screaton GR, Singer M, Cairns HS, Thrasher A, Sarner M, Cohen SL (1992) Hyperpryrexia and rhabdomyolysis after MdMA (“Ecstasy”) abuse. Lancet 339: 677–678

    Google Scholar 

  • Seguela P, Watkins KC, Descarries L (1989) Ultrastructural relatinship of serotonin axon terminals in the cerebral cortex of the adult rat. J Comp Neurol 289: 129–142

    PubMed  Google Scholar 

  • Seiden JS, Vosmer G (1984) Formation of 6-hydroxydopamine in candate nucleus of rat brain after a single large dose of methamphetamine. Pharmacol Biochem Behav 21: 29–31

    PubMed  Google Scholar 

  • Seiden LS, Sabol KE, Ricaurte G (1993) Amphetamine effects on catecholamine systems and behavior. Annu Rev Pharmacol 32: 639–677

    Google Scholar 

  • Shulgin AT (1986) The background and chemistry of MDMA. J Psychoact Drugs 18: 291–304

    Google Scholar 

  • Sirvio J, Riekkinen P jr, Jakala P, Riekkinen PJ (1994) Experimental studies on the role of serotonin in cognition. Prog Neurobiol 43: 363–379

    PubMed  Google Scholar 

  • Slikker W jr, Holson RR, Ali SF, Kolta MG, Paule MG, Scallet AC, McMillan DE, Bailey JR, Hong JS, Scalzo FM (1989) Behavioural and neurochemical effects of orally adminisstered MDMA in the rodent and nonhuman primate. Neurotoxicology 10: 529–542

    PubMed  Google Scholar 

  • Smale L, Michels KM, Morre RY, Morin LP (1990) Destruction of the hamster seroton-ergic system by 5,7-DHT: effects on circadian rhythm phase, intrainment and response to triazolam. Brain Res 515: 9–19

    PubMed  Google Scholar 

  • Spanos LJ, Yamamoto BK (1989) Acute and subchronic effects of methylene-dioxymethamphetamine f(+)-MDMA] on locomotion and serotonin syndrome behaviour in the rat. Pharmacol Biochem Behav 32: 835–840

    PubMed  Google Scholar 

  • Spoont MR (1992) Modulatory role of serotonin in neural information processing: implications for human psychopathology. Psychol Bull 112: 330–350

    PubMed  Google Scholar 

  • Sprague J, Nichols DE (1995) The monoamine oxidase B inhibitor L-deprenyl protects against 3,4-methylenedioxymethamphetamine-induced lipid peroxidation and long-term serotonergic deficits. J Pharmacol Exp Ther 273: 667–673

    PubMed  Google Scholar 

  • Sternbach H (1991) The serotonin syndrome. Am Psychiat 148: 705–713

    Google Scholar 

  • Stone DM, Stahl DC, Hanson GR, Gibb JW (1986) The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxymam-phetamine (MDA) on monoaminergic systems in the rat brain. Eur J Pharmacol 128: 41–48

    PubMed  Google Scholar 

  • Stone DM, Johnson M, Hanson GR, Gibb JW (1988) Role of endogenous dopamine in the central serotonergid deficits induced by 3,4-methylenedioxymethamphetamine. J Pharmacol Exp Ther 247: 79–87

    PubMed  Google Scholar 

  • Stone DM, Hanson GR, Gibb JW (1989) In vitro reactivation of rat cortical tryptophan hydroxylase following in vivo inactivation by MDMA. J Neurochem 53: 572–581

    PubMed  Google Scholar 

  • Swanson RA, Choi DW (1993) Glial glycogen stores affect neuronal survival during glucose deprivation in vitro. J Cereb Blood Flow Metab 13: 162–169

    PubMed  Google Scholar 

  • Whitaker-Azmitia PM, Murphy R, Azmitia EC (1990) Stimulation of astroglial 5HT1A receptors releases the serotonergic growth factor, protein S100, and alters astroglial morphology. Brain Res 528: 155–158

    PubMed  Google Scholar 

  • Wilson MA, Ricaurte GA, Molliver ME (1989) Distinct morphologic classes of serotonergic axons in primates exhibit differential vulnerability to the psychotropic drug 3,4-methylenedioxymethamphetamine. Neuroscience 28: 121–137

    PubMed  Google Scholar 

  • Wing LL, Tapson GS, Geyer MA (1995) 5-HT-2 mediation of acute behavioral-effects of hallucinogens in rats. Psychopharmacology 100: 417–425

    Google Scholar 

  • Zhou D, Schreinert M, Pilz J, Huether G (1996) Rat strain differences in the vulnerability of serotonergic nerve endings to neurotoxic damage by p-chloroamphetamine. J Neural Transm 103: 1381–1395

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is dedicated to Prof. Dr. N. Matussek on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huether, G., Zhou, D. & Rüther, E. Causes and consequences of the loss of serotonergic presynapses elicited by the consumption of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) and its congeners. J. Neural Transmission 104, 771–794 (1997). https://doi.org/10.1007/BF01285547

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01285547

Keywords

Navigation