Skip to main content
Log in

Spermatogenesis inPyrosoma atlanticum (Tunicata: Thaliacea: Pyrosomatida): Implications for tunicate phylogeny

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Colonies ofPyrosoma atlanticum were collected by submersible in October 1988 in the Caribbean Sea, and testes were studied by electron microscopy. Spermatogonia, spermatocytes and early spermatids have two centrioles. The proximal centriole subsequently disappears, its remains apparently persisting in the spermatozoon as dense material adjacent to the distal centriole, which gives rise to the axoneme. At the tip of early spermatids are several 50 nm proacrosomal vesicles, which disappear leaving no trace in early elongating spermatids. The spermatozoon lacks an acrosome and has a head 35µm long. The head is differentiated into a bulbous posterior portion 5µm long × 1µm wide, a thinner anterior portion 25µm long tapering from a width of 0.7µm to a width of 0.4µm, and a very thin anterior extension 5µm long × 0.5µm wide. At the start of elongation, the anterior extension begins to form just lateral to the proacrosomal vesicles as a spiral projection comprising part of the nucleus, covered by a thin sheath of cytoplasm. This sheath of cytoplasm undergoes a complex differentiation. Ultimately, the nucleus in the anterior extension is overlain by two membrane-bound sheaths of cytoplasm connected by a spiral flange of cytoplasm. Between these two sheaths is a spiral space, open to the exterior through a subterminal pore near the sperm tip. In early spermatids the mitochondria fuse into a single mitochondrion, which remains lateral to the nucleus. The cristae become modified late in spermatogenesis. Throughout elongation of the spermatid there are patches of dense material between the nucleus and mitochondrion. A manchette of microtubules transiently encircles the thin anterior portion of the nucleus during the last phase of elongation. A manchette is not present during most of elongation. In the spermatozoon the mitochondrion, which has reticulate cristae, spirals a few times about the nucleus and extends from the junction between the bulbous portion and the thinner anterior portion of the nucleus to the junction between the thinner anterior portion and the nuclear extension. Spermatogenesis inP. atlanticum, compared to that in other tunicates, most closely resembles that in colonial ascidians, and supports the majority view that pyrosomes arose from aplousobranch ascidians that lost their attachment to the substratum. Pyrosome sperm are more highly derived than doliolid sperm, which have an acrosome that is probably capable of exocytosis. When salp and pyrosome sperm are compared, both are highly derived, but neither shares any apomorphies with the other that it does not share with at least one other tunicate order. Thus, sperm morphology does not support the majority view that pyrosomes gave rise to doliolids and neither confirms nor denies the idea that pyrosomes are intermediate between aplousobranch ascidians and salps. Therefore, it is likely that the class Thaliacea is polyphyletic, with doliolids arising very early from the ascidian lineage and with salps and pyrosomes arising somewhat later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Asa, C. S., Phillips, D. M. (1988). Nuclear shaping in spermatids of the Thai leaf frogMegaphrys montana. Anat. Rec. 220: 287–290

    Google Scholar 

  • Balfour, F. M. (1885). A treatise on comparative embryology. 2nd ed. Vol. 2. MacMillan, London

    Google Scholar 

  • Berrill, N. J. (1936). Studies in tunicate development. V. Evolution and classification. Phil. Trans. R. Soc. (Ser. B) 225: 43–70

    Google Scholar 

  • Berrill, N. J. (1950). The Tunicata with an account of the British species. Ray Society, London

    Google Scholar 

  • Brien, P. (1948). Embranchement des tuniciers. Traité Zool. 11: 553–894

    Google Scholar 

  • Brooks, W. K. (1893). The genusSalpa. Mem. biol. Lab. Johns Hopkins Univ. 2: 1–396, 57 plates

    Google Scholar 

  • Burighel, P., Martinucci, G. B., Magri, F. (1985). Unusual structures in the spermatozoa of the ascidiansLissoclinum perforatum andDiplosoma listerianum (Didemnidae). Cell Tissue Res. 241: 513–521

    Google Scholar 

  • Cary, S. C., Felbeck, H., Holland, N. D. (1989). Observations on the reproductive biology of the hydrothermal vent tube wormRiftia pacyptilia. Mar. Ecol. Prog. Ser. 52: 89–94

    Google Scholar 

  • Cloney, R. A., Abbott, L. C. (1980). The spermatozoa of ascidians: acrosome and nuclear envelope. Cell Tissue Res. 206: 261–270

    Google Scholar 

  • Colwin, A. L., Colwin, L. H. (1955). Sperm entry and the acrosome filament (Holothuria atra andAsterias amurensis). J. Morph. 97: 543–567

    Google Scholar 

  • Cotelli, R., De Santis, R., Rosati, F., Monroy, A. (1980). Acrosome differentiation in the spermatogenesis ofCiona intestinalis. Dev. Growth Differentiation 22: 561–569

    Google Scholar 

  • Dan, J. C. (1952). Studies on the acrosome. I. Reaction to egg water and other stimuli. Biol. Bull. mar. Biol. Lab., Woods Hole 103: 54–66

    Google Scholar 

  • Fawcett, D. W., Anderson, W. A., Phillips, D. M. (1971). Morphogenetic factors influencing the shape of the sperm head. Devl Biol. 26: 220–251

    Google Scholar 

  • Fenaux, R. (1967). Les appendiculaires des mer d'Europe et du Bassin Méditerranéen. Faune Eur. Bassin méditerr. 2: 1–113

    Google Scholar 

  • Field, K. G., Olsen, G. J., Giovannoni, S. J., Raff, E. C., Pace, N. R., Raff, R. A. (1989). Response to phylogeny and molecular data. Science, N.Y. 243: 550–551

    Google Scholar 

  • Field, K. G., Olsen, G. J., Lane, D. J., Giovannoni, S. J., Ghiselin, M. T., Raff, E. C., Pace, N. R., Raff, R. A. (1988). Molecular phylogeny of the animal kingdom. Science. N.Y. 239: 748–753

    Google Scholar 

  • Flood, P. R., Afzelius, B. A. (1978). The spermatozoon ofOikopleura dioica Fol (Larvacea, Tunicata). Cell Tissue Res. 191: 27–37

    Google Scholar 

  • Franzén, Å. (1956). On spermiogenesis, morphology of the spermatozoon and biology of fertilization among invertebrates. Zool. Bidr. Upps. 31: 354–482

    Google Scholar 

  • Franzén, Å. (1958). On sperm morphology and acrosome filament formation in some Annelida, Echiuroidea, and Tunicata. Zool. Bidr. Upps. 33: 1–28

    Google Scholar 

  • Franzén, Å. (1970). Phylogenetic aspects of the morphology of spermatozoa and spermiogenesis. In: Baccetti, B. (ed.) Comparative spermatology. Academic Press, New York, p. 29–46

    Google Scholar 

  • Franzén, Å. (1976). The fine structure of spermatid differentiation in a tunicateCorella parallogramma (Müller). ZOON 4: 115–120

    Google Scholar 

  • Franzén, Å. (1983a). Urochordata. In: Adiyodi, K. G., Adiyodi, R. G. (eds.) Reproductive biology of invertebrates. Vol. 2. John Wiley & Sons, Chichester, p. 621–632

    Google Scholar 

  • Franzén, Å. (1983b). Ultrastructural studies of spermatozoa in three bivalve species with notes on evolution of elongated sperm nucleus in primitive spermatozoa. Gamete Res. 7: 199–214

    Google Scholar 

  • Fukumoto, M. (1979). Tube-like structures in mitochondria of tunicate (Pyura vittata). J. Ultrastruct. Res. 68: 1–5

    Google Scholar 

  • Fukumoto, M. (1981). The spermatozoa and spermiogenesis ofPerophora formosana (Ascidia) with special reference to the striated apical structure and the filamentous structures in the mitochondrion. J. Ultrastruct. Res. 77: 37–53

    Google Scholar 

  • Fukumoto, M. (1983). Fine structure and differentiation of the acrosome-like structure in the solitary ascidians,Pyura haustor andStyela plicata. Dev. Growth Differentiation 25: 503–515

    Google Scholar 

  • Fukumoto, M. (1984a). Fertilization in ascidians: acrosome fragmentation inCiona intestinalis spermatozoa. J. Ultrastruct. Res. 87: 252–262

    Google Scholar 

  • Fukumoto, M. (1984b). The apical structure inPerophora annectens (Tunicate) spermatozoa: fine structure, differentiation and possible role in fertilization. J. Cell Sci. 66: 175–187

    Google Scholar 

  • Fukumoto, M. (1985). Acrosome differentiation inMolgula manhattensis (Ascidiacea, Tunicata). J. Ultrastruct. Res. 92: 158–166

    Google Scholar 

  • Fukumoto, M. (1986). The acrosome in ascidians: Pleurogona. Int. J. Invertebrate Reprod. Dev. (Amsterdam) 10: 335–346

    Google Scholar 

  • Fukumoto, M. (1988). Fertilization in ascidians: apical processes and gamete fusion inCiona intestinalis spermatozoa. J. Cell Sci. 89: 189–196

    Google Scholar 

  • Fukumoto, M. (1989). The acrosome reaction inCiona intestinalis (Ascidia, Tunicata). Dev. Growth Differentiation 31: p. 397

    Google Scholar 

  • Garstang, W. (1892). On the development of the stigmata in ascidians. Proc. R. Soc. 51: 505–513

    Google Scholar 

  • Garstang, W. (1928). The morphology of the Tunicata, and its bearing on the phylogeny of the Chordata. Q. Jl microsc. Sci. 72: 51–187

    Google Scholar 

  • Ghiselin, M. T. (1988). The origin of molluscs in the light of molecular evidence. Oxf. Surv. evolut. Biol. 5: 66–95

    Google Scholar 

  • Godeaux, J. (1957–1958). Contribution à la connaisance des thaliacés (Pyrosoma etDoliolum). Annls Soc. r. zool. Belg. 88: 1–285

    Google Scholar 

  • Grobben, D. (1882).Doliolum und sein Generationswechsel. Arb. zool. Inst. Univ. Wien 4: 201–298

    Google Scholar 

  • Hawkins, C. J., Kott, P., Parry, D. L., Swinehart, J. H. (1983). Vanadium content and oxidation state related to ascidian phylogeny. Comp. Biochem. Physiol. 76B: 555–558

    Google Scholar 

  • Heider, K. (1900). Tunicata. In: Korscheldt, E., Heider, K. (eds.) Textbook of the embryology of invertebrates. Sonnenschein, London, p. 334–534 [Translated from German by M. Bernard and M. W. Woodward]

    Google Scholar 

  • Herdman, W. (1888). Report on the Tunicata collected by HMS Challenger during the years 1873–1876. Rep. scient. Results Voyage HMS Challenger (s: Zool.) 27: 1–57

    Google Scholar 

  • Hodgson, A. N., Bernard, R. T. F. (1988). A comparison of the structure of the spermatozoa and spermatogenesis of 16 species of patellid limpet (Mollusca: Gastropoda: Archaeogastropoda). J. Morph. 195: 205–223

    Google Scholar 

  • Holland, L. Z. (1988). Spermatogenesis in the salpsThalia democratica andCyclosalpa affinis (Tunicata: Thaliacea): an electron microscope study. J. Morph. 198: 189–204

    Google Scholar 

  • Holland, L. Z. (1989). Fine structure of spermatids and sperm ofDolioletta gegenbauri andDoliolum nationalis (Tunicata: Thaliacea): implications for tunicate phylogeny. Mar. Biol. 101: 83–95

    Google Scholar 

  • Holland, L. Z., Gorsky, G., Fenaux, R. (1988). Fertilization inOikopleura dioica (Tunicata: Appendicularia): acrosome reaction, cortical reaction and sperm-egg fusion. Zoomorphology 108: 229–243

    Google Scholar 

  • Honegger, T. G. (1986). Fertilization in ascidians: studies on the egg envelope, sperm and gamete interactions inPhallusia mammillata. Devl Biol. 118: 118–128

    Google Scholar 

  • Huxley, T. H. (1851). Observations upon the anatomy and physiology ofSalpa andPyrosoma, together with remarks uponDoliolum and Appendicularia. Phil. Trans. R. Soc. 1851(2): 457–605

    Google Scholar 

  • Huxley, T. H. (1859). On the anatomy and development ofPyrosoma. Trans. Linn. Soc. Lond. 23: 193–250

    Google Scholar 

  • Ihle, I. E. W. (1910). Die Thaliaceen (einschließlich Pyrosomen) der Siboga-Expedition. E. J. Brill, Leiden (Monographie 56 aus Uitkomsten op zoologisch, botanisch, oceanographisch en geologisch gebied verzameld in Nederlandsch Oost-Indie 1899–1900)

  • Jefferies, R. P. S. (1987). The ancestry of the vertebrates. British Museum (Natural History), London

    Google Scholar 

  • Julin, C. (1896). Recherches sur la blastogenèse chezDistaplia magnilarva etD. rosea. In: Compte-rendu des séances du troisième congrès international de zoologic. E. J. Brill, Leyde, p. 507–524

    Google Scholar 

  • Julin, C. (1904). Recherches sur la phylogenèse des tuniciers. Développement de l'appariel branchial. Z. wiss. Zool. 76: 544–611

    Google Scholar 

  • Kessel, R. G. (1966). Electron microscope studies on the origin and maturation of yolk in oocytes of the tunicate,Ciona intestinalis. Z. Zellforsch. 71: 525–544

    Google Scholar 

  • Kondo, T., Hasegawa, K., Uchida, T. Z. (1988). Formation of the microtubule bundle and helical shaping of the spermatid in the common finch,Lonchura striata var.domestica. J. Ultrastruct. molec. Struct. Res. 98: 158–168

    Google Scholar 

  • Lohmann, J. (1933). Erster Unterstamm der Chordata. Tunicata = Manteltiere. Allgemeine Einleitung in die Naturgeschichte der Tunicata. Handb. Zool. 5(2): 3–14

    Google Scholar 

  • Metcalf, M. M. (1918). The Salpidae: a taxonomic study. Bull. U.S. natn. Mus. 100 2(2): 1–193

    Google Scholar 

  • Metcalf, M. M., Hopkins, H. S. (1919). Pyrosoma. A taxonomic study based upon the collections of the United States Bureau of Fisheries and the United States National Museum. Bull. U.S. natn. Mus. No. 100 2(3): 195–275

    Google Scholar 

  • Neumann, G. (1933). Zweite Klasse der Tunicata. Acopa = Caducichordata. Erste Unterklasse der Acopa Thaliaceae. Handb. Zool. 5(2): 203–400

    Google Scholar 

  • Oka, S. (1912). Eine neue phylogenetisch interessante Synascidie. (Cyathocormus mirabilis n.g. n.sp.). Zool. Anz. 40: 257–261

    Google Scholar 

  • Penny, D. (1989). What, if anything, isProchloron? Nature, Lond. 337: 304–305

    Google Scholar 

  • Phillips, D. M. (1976). Nuclear shaping during spermiogenesis in the whip scorpion. J. Ultrastruct. Res. 54: 397–405

    Google Scholar 

  • Raff, R. A., Field, K. G., Ghiselin, M. T., Lane, D. J., Olsen, G. J., Pace, N. R., Parks, A. L., Parr, B. S., Raff, E. C. (1988). Molecular analysis of distant phylogenetic relationships in echinoderms. In: Paul, C. R. C., Smith, A. B. (eds.) Echinoderm phylogeny and evolutionary biology. Clarendon Press, Oxford, p. 29–41

    Google Scholar 

  • Ritter, W. (1905). The pelagic Tunicata of the San Diego region, excepting the Larvacea. Univ. Calif. Publs Zool. 2: 51–112

    Google Scholar 

  • Rosati, F., Pinto, M. R., Casazza, G. (1985). The acrosomal region of the spermatozoon ofCiona intestinalis: its relationship with the binding to the vitelline coat of the egg. Gamete Res. 11: 379–389

    Google Scholar 

  • Salensky, W. (1893). Über die Entstehung der Metagenesis bei Tunicaten. Biol. Zbl. 13: 126–146

    Google Scholar 

  • Seeliger, O. (1893–1911). Tunicata: Mantelthiere. Bronn's Kl. Ordn. Tierreichs 3 (Suppl): 1–1773

    Google Scholar 

  • Van Soest, R. M. W. (1981). A monograph of the order Pyrosomatida (Tunicata, Thaliacea). J. Plankton Res. 3: 603–631

    Google Scholar 

  • Theophiloff, S. (1892). Zur Phylogenie der Tunicaten. Eine kritische Studie. Inaugural-Dissertation der philosophischen Fakultät der Universität Jena zur Erlangung der philosophischen Doktorwürde. B. Engau, Jena

    Google Scholar 

  • Tokioka, T. (1971). Phylogenetic speculation of the Tunicata. Publs Seto mar. biol. Lab. 19: 43–63

    Google Scholar 

  • Tuzet, O., Bogoraze, D., Lafargue, F. (1972). Recherches ultrastructurales sur la spermiogenèse deDiplosoma listerianum (Milne-Edwards, 1841) etLissoclinum pseudoleptoclinum (Von Drasche, 1883) ascidies composées, aplousobranches. Annls Sci. nat. (sér. Zool.) (12e Sér). 14: 177–190

    Google Scholar 

  • Tuzet, O., Bogoraze, D., Lafargue, F. (1974). La spermatogenèse dePolysynchraton lacazei, 1872 etTrididemnum cereum Giard (ascidies composées, aplousobranches). Bull. biol. Fr. Belg. 108: 151–167

    Google Scholar 

  • Uljanin, B. (1884). Die Arten der GattungDoliolum im Golfe von Neapel und den angrenzenden Meeresabschnitten. Fauna Flora Golf. Neapel 10: 1–140

    Google Scholar 

  • Villa, L. (1975). An ultrastructural investigation of normal and irradiated spermatozoa of a tunicate,Ascidia malaca. Boll. Zool. 42: 95–98

    Google Scholar 

  • Villa, L. (1981). An electron microscope study of spermiogenesis and spermatozoa ofMolgula impura andStyela plicata (Ascidiacea, Tunicata). Acta Embryol. Morph. exp. (N.S.) 2: 69–85

    Google Scholar 

  • Villa, L., Tripepi, S. (1983). An electron microscope study of spermatogenesis and spermatozoa ofAscidia malaca, Ascidiella aspersa andPhallusia mammillata (Ascidiacea, Tunicata). Acta Embryol. Morph. exp. (N.S.) 4: 157–168

    Google Scholar 

  • Webster, P. M., Richards, S. K. (1977). Spermiogenesis in the enchytraeidLumbricillus rivalis (Oligochaeta: Annelida). J. Ultrastruct. Res. 61: 62–77

    Google Scholar 

  • West, D. L. (1978). Ultrastructural and cytochemical aspects of spermiogenesis inHydra hymanae, with reference to factors involved in sperm head shaping. Devl Biol. 65: 139–154

    Google Scholar 

  • Wirth, U. (1984). Die Struktur der metazoen Spermien und ihre Bedeutung für die Phylogenetik. Verh. naturw. Ver. Hamb. 27: 295–362

    Google Scholar 

  • Young, J. Z. (1981). Life of the vertebrates. 3rd ed. Clarendon Press, Oxford, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, L.Z. Spermatogenesis inPyrosoma atlanticum (Tunicata: Thaliacea: Pyrosomatida): Implications for tunicate phylogeny. Mar. Biol. 105, 451–470 (1990). https://doi.org/10.1007/BF01316317

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01316317

Keywords

Navigation