Skip to main content
Log in

Comparing mutants, selective breeding, and transgenics in the dissection of aging processes ofCaenorhabditis elegans

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The genetic analysis of aging processes has matured in the last ten years with reports that long-lived strains of both fruit flies and nematodes have been developed. Several attempts to identify mutants in the fruit fly with increased longevity have failed and the reasons for these failures are analyzed. A major problem in obligate sexual species, such as the fruit fly, is the presence of inbreeding depression that makes the analysis of life-history traits in homozygotes very difficult. Nevertheless, several successful genetic analyses of aging inDrosophila suggest that with careful design, fruitful analysis of induced mutants affecting life span is possible. In the nematodeCaenorhabditis elegans, mutations in theage-1 gene result in a life extension of some 70%; thusage-1 clearly specifies a process involved in organismic senescence. This gene maps to chromosome II, well separated from a locus (fer-15) which is responsible for a large fertility deficit in the original stocks. There is no trade-off between either rate of development or fertility versus life span associated with theage-1 mutation. Transgenic analyses confirm that the fertility deficit can be corrected by a wild-typefer-15 transformant (transgene); however, the life span of these transformed stocks is affected by the transgenic array in an unpredictable fashion. The molecular nature of theage-1 gene remains unknown and we continue in our efforts to clone the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arking, R., 1987. Evolution of longevity in animals, pp. 1–22 in Genetic and Environmental Determinants of Longevity inDrosophila, edited by A. D. Woodhead & K. H. Thompson. Plenum Publishing Corp., NY.

    Google Scholar 

  • Arking, R., 1988. Genetic analysis of aging processes inDrosophila. Exp. Aging. Res. 14: 125–135.

    PubMed  Google Scholar 

  • Arking, R., S. Buck, A. Berrios, S. Dwyer & G. T. Baker III, 1991. Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain ofDrosophila. Dev. Genet. 12: 362–370.

    PubMed  Google Scholar 

  • Arking, R. & R. A. Wells, 1990. Genetic alteration of normal aging processes is responsible for extended longevity inDrosophila. Devel. Genet. 11: 141–148.

    Google Scholar 

  • Brooks, A. & T. E. Johnson, 1991. Genetic specification of life span and self-fertility in recombinant-inbred strains ofCaenorhabditis elegans. Heredity 67: 19–28.

    PubMed  Google Scholar 

  • Brenner, S., 1974. The Genetics ofCaenorhabditis elegans. Genetics 77: 71–94.

    PubMed  Google Scholar 

  • Capecchi, M. R., 1989. Altering the genome by homologous recombination. Science 244: 1288–1292.

    PubMed  Google Scholar 

  • Charlesworth, B., 1988. Selection for longer-lived rodents. Growth Devel. Aging 52: 211.

    Google Scholar 

  • Coulson, A., J. Sulston, S. Brenner & J. Karn, 1986. Toward a physical map of the genome of the nematodeCaenorhabditis elegans. Proc. Natl.Acad. Sci. USA 83: 7821–7825.

    Google Scholar 

  • Coulson, A., J. Waterston, J. Sulston & Y. Kohara, 1988. Genome linking with yeast artificial chromosomes. Nature 335: 184–186.

    PubMed  Google Scholar 

  • Finch, C. E., 1990. Longevity, Senescence, and the Genome. The University of Chicago Press, Chicago.

    Google Scholar 

  • Fleming, J. E., G. S. Spicer, R.C. Garrison & M. R. Rose, 1993. Two-dimensional protein electrophoretic analysis of postponed aging inDrosophila. Genetica (In press).

  • Friedman, D. B. & T. E. Johnson, 1988a. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118: 75–86.

    PubMed  Google Scholar 

  • Friedman, D. B. & T. E. Johnson, 1988b. Three mutants that extend both mean and maximum life span of the nematode,Caenorhabditis elegans, define the age-1 gene. J. Gerontol. Biol. Sci. 43: B102–109.

    Google Scholar 

  • Gould, A. B. & A. M. Clark, 1977. X-ray induced mutations causing adult life-shortening inDrosophila melanogaster. Exp. Gerontol. 12: 107–112.

    PubMed  Google Scholar 

  • Graves, J. L., E. C. Toolson, C. Jeong, L. N. Vu & M. R. Rose, 1992. Desiccation, flight, glycogen and postponed senescence inDrosophila melanogaster. Physiol. Zool. (In press).

  • Harrison, D. E., 1988. Mini-Editorial Introduction: Selection for longer-lived rodents. Growth Devel. Aging 52: 207.

    Google Scholar 

  • Herman, R. K., 1988. Genetics, pp. 17–45 in The NematodeCaenorhabditis elegans, edited by W. B. Wood, Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Hutchinson, E. W., 1993. Genetica (In press).

  • Hutchinson, E. W. & M. R. Rose, 1990. Quantitative genetic analysis of postponed aging inDrosophila melanogaster, pp. 65–85 in Genetic Effects on Aging II, edited by D. E. Harrison, Telford Press, Caldwell, NJ.

    Google Scholar 

  • Johnson, T. E., 1984. Analysis of the biological basis of aging in the nematode, with special emphasis onCaenorhabditis elegans, pp. 59–93 in Invertebrate Models in Aging Research, edited by D. H. Mitchell & T. E. Johnson, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Johnson, T. E., 1987. Aging can be genetically dissected into component processes using long-lived lines ofCaenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 84: 3777–3781.

    PubMed  Google Scholar 

  • Johnson, T. E., 1988. Thoughts on the selection of longer-lived rodents. Growth Devel. Aging 52: 207–209.

    Google Scholar 

  • Johnson, T. E., 1990. The increased life span of age-1 mutants inCaenorhabditis elegans results from lowering the Gompertz rate of aging. Science 249: 908–912.

    PubMed  Google Scholar 

  • Johnson, T. E., D. B. Friedman, N. Foltz, P. A. Fitzpatrick & J. E. Shoemaker, 1990. Genetic variants and mutations ofCaenorhabditis elegans provide tools for dissecting the aging processes, pp. 101–127 in Genetic Effects on Aging. Volume II, edited by D. E. Harrison, Telford Press, NY.

    Google Scholar 

  • Johnson, T. E. & E. W. Hutchinson, Absence of strong heterosis for life span and other life history traits inCaenorhabditis elegans. Genetics, in press.

  • Johnson, T. E., E. W. Hutchinson & P. M. Tedesco, Genetic and physical mapping of fer-15 and age-1 using chromosome deficiencies inCaenorhabditis elegans (Submitted).

  • Johnson, T. E., D. H. Mitchell, S. Kline, R. Kemal & J. Foy, 1984. Arresting development arrests aging in the nematodeCaenorhabditis elegans. Mech. Ageing Dev. 28: 23–40.

    PubMed  Google Scholar 

  • Johnson, T. E. & W. B. Wood, 1982. Genetic analysis of life-span inCaenorhabditis elegans. Proc. Natl. Acad. Sci. USA 79: 6603–6607.

    PubMed  Google Scholar 

  • Klass, M. R., 1983. A method for the isolation of longevity mutants in the nematodeCaenorhabditis elegans and initial results. Mech. Ageing Dev. 22: 279–286.

    PubMed  Google Scholar 

  • Lee, E. & M. Desu, 1972. A computer program for comparing k samples with right-censored data. Comp. Progs. Biomed. 2: 315–321.

    Google Scholar 

  • Leffelaar, D. & T. A. Grigliatti, 1984. A mutation inDrosophila that appears to accelerate aging, Develop. Genet. 4: 199–210.

    Google Scholar 

  • Luckinbill, L. S., R. Arking, M. J. Clare, W. C. Cirocco & S. A. Muck, 1984. Selection for delayed senescence inDrosophila melanogaster. Evolution 38: 996–1003.

    Google Scholar 

  • Luckinbill, L. S., J. L. Graves, A. Tomkiw & O. Sowirka, 1988. A qualitative analysis of some life-history correlates of longevity inDrosophila melanogaster. Evol. Eco. 2: 85–94.

    Google Scholar 

  • Luckinbill, L. S., V. Riha, S. Rhine & T. A. Grudzien, 1990. The role of glucose-6-phosphate dehydrogenase in the evolution of longevity inDrosophila melanogaster. Heredity 65: 29–38.

    PubMed  Google Scholar 

  • Maynard Smith, J., 1958. The effects of temperature and egg laying on the longevity ofDrosophila subobscura. Journal of Experimental Biology 35: 832–842.

    Google Scholar 

  • Mello, C. C., J. M. Kramer, D. Stinchcomb & V. Ambros, 1991. Efficient gene transfer inC. elegans: extrachromosomal maintenance and integration of transforming sequences. The EMBO J. 10: 3959–3970.

    Google Scholar 

  • Olson, M. V., 1992. The lessons from the nematode. Curr. Biol. 5: 221–223.

    Google Scholar 

  • Pretzlaff, R. & R. Arking, 1989. Patterns of amino acid incorporation in long-lived genetic strains ofDrosophila melanogaster. Exp. Geront. 24: 67–81.

    Google Scholar 

  • Roberts, P. A. & R. B. Iredale, 1985. Can mutagenesis reveal major genes affecting senescence. Exp. Geront. 20: 119–121.

    Google Scholar 

  • Rose, M. R., 1984. Laboratory evolution of postponed senescence inDrosophila melanogaster. Evolution 38: 1004–1010.

    Google Scholar 

  • Rose, M. R., 1988. Response to ‘Thoughts on the selection of longer-lived rodents’-Rejoinders. Growth Devel. Aging 52: 209–211.

    Google Scholar 

  • Rose, M. R., 1991. Evolutionary Biology of Aging. Oxford Univ. Press, NY.

    Google Scholar 

  • Rose, M. R., J. E. Fleming, G. Spicer, R. E. Tyler & F. J. Ayala, 1990. Molecular genetics of postponed aging inDrosophila (Abstract).The Gerontologist 30: 252A-253A.

    Google Scholar 

  • Rose, M. R., 1990. A workshop summary: should mice be selected for postponed aging? Growth Devel. Aging 54: 7–15.

    Google Scholar 

  • Rose, M. R. 1993. Genetica (In press).

  • Sigurdson, D. C., G. J. Spanier & R. K. Herman, 1984.Caenorhabditis elegans deficiency mapping. Genetics 108: 331–345.

    PubMed  Google Scholar 

  • St Johnston, D. & C. Nusslein-Volhard, 1992. The origin of pattern and polarity in theDrosophila embryo. Cell 68: 201–219.

    PubMed  Google Scholar 

  • Stinchcomb, D. T., J. E. Shaw, S. H. Carr & D. Hirsh, 1985. Extrachromosomal DNA transformation ofCaenorhabditis elegans. Mol. Cell Biol 5: 3484–3496.

    PubMed  Google Scholar 

  • Stearns, S. C., M. Kaiser & E. Hillesheim, 1993. Effects of fitness components of enhanced expression of elongation factor EF-1α inDrosophila melanogaster: I. The contrasting approaches of molecular and population biologists.Genetica (In press).

  • Sulston, J., Z. Du, K. Thomas, R. Wilson, L. Hillier,R. Staden, N. Halloran, P. Green, J. Thierry-Mieg, L. Qiu, S. Dear, A. Coulson, M. Craxton, R. Durbin, M. Berks, M. Metzstein, T. Hawkins, R. Ainscough & R. Waterston, 1992. TheC. elegans genome sequencing project: a beginning. Nature 356: 37–41.

    PubMed  Google Scholar 

  • Van Voorhies, W. A., 1992. Production of sperm reduces nematode lifespan. Nature 360: 456–458.

    PubMed  Google Scholar 

  • Watson, J. D., M. Gilman, J. Witkowski & M. Zoller, 1992. Recombinant DNA. Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Wood, W. B., 1988. The NematodeCaenorhabditis elegans. Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, T.E., Tedesco, P.M. & Lithgow, G.J. Comparing mutants, selective breeding, and transgenics in the dissection of aging processes ofCaenorhabditis elegans . Genetica 91, 65–77 (1993). https://doi.org/10.1007/BF01435988

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01435988

Key words

Navigation