Skip to main content
Log in

The organization of the envelope projections on the surface of HIV

  • Original Papers
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

The organization of envelope projections (knobs) of four different isolates of the human immunodeficiency virus types 1 and 2 (HIV-1 and -2) was studied using surface replica and thin section electron microscopy (EM) in combination with rotational image enhancement. All HIV strains show an identical organization of knobs on the virus envelope. The surface of an “ideal”, well-preserved HIV particle is studded with 72 knobs arranged in a T=7 laevo symmetry. The role of the p17 protein, which is coating the inner leaflet of the viral envelope, is discussed as a matrix protein functioning as a scaffold for the envelope and its projections during morphogenesis as well as with mature virions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caspar DLD, Klug A (1962) Physical principles in the construction of regular viruses. In: Basic Mechanisms in Animal Virus Biology. Cold Spring Harbor Symp Quant Biol 27: 1–24

    PubMed  Google Scholar 

  2. Clavel F, Guyader M, Guétard D, Sallé M, Montagnier L, Alizon M (1986) Molecular cloning and polymorphism of the human immune deficiency virus type 2. Nature 324: 691–695

    PubMed  Google Scholar 

  3. Cheng-Mayer C, Rutka JT, Rosenblum ML, McHugh T, Stites DP, Levy JA (1987) Human immunodeficiency virus can productively infect cultured human glial cells. Proc Natl Acad Sci USA 84: 3526–3530

    PubMed  Google Scholar 

  4. Finch JT, Holmes KC (1967) Structural studies of viruses. In: Maramorosch K, Koprowski H (eds) Methods in virology, vol 3. Academic Press, New York London, pp 351–474

    Google Scholar 

  5. Frank H, Schwarz H, Graf T, Schäfer W (1978) Properties of mouse leukemia viruses. XV. Electron microscopic studies on the organization of Friend leukemia virus and other mammalian C-type viruses. Z Naturforsch 33c: 124–138

    Google Scholar 

  6. Fuller SD (1987) The T=4 envelope of Sindbis virus is organized by interactions with a complementary T=3 capsid. Cell 48: 923–934

    PubMed  Google Scholar 

  7. Gelderblom H, Özel M, Pauli G (1985a) T-Zell-spezifische Retroviren des Menschen: Vergleichende morphologische Klassifizierung und mögliche funktionelle Aspekte. Bundesgesundheitsbl 28: 161–171

    Google Scholar 

  8. Gelderblom H, Reupke H, Pauli G (1985b) Loss of envelope antigens of HTLV-III/LAV, a factor in AIDS pathogenesis? Lancet ii: 1016–1017

    Google Scholar 

  9. Gelderblom HR, Hausmann EHS, Özel M, Pauli G, Koch MA (1987) Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156: 171–176

    PubMed  Google Scholar 

  10. Gelderblom HR, Özel M, Hausmann EHS, Winkel T, Pauli G, Koch MA (1988) Fine structure of human immunodeficiency virus (HIV), immunolocalization of structural proteins and virus-cell relation. Micron 19 (in press)

  11. Gonda MA, Wong-Staal F, Gallo RC, Clements JE, Narayan O, Gilden RV (1985) Sequence homology and morphologic similarity of HTLV-III and visna virus, a pathogenic lentivirus. Science 227: 173–177

    PubMed  Google Scholar 

  12. Gonda MA, Braun MJ, Clements JE, Pyper YM, Wong-Staal F, Gallo RC, Gilden RV (1986) Human T-cell lymphotropic virus type III shares sequence homology with a family of pathogenic lentiviruses. Proc Natl Acad Sci USA 83: 4007–4011

    PubMed  Google Scholar 

  13. Guyader M, Emermann M, Sonigo P, Clavel F, Montagnier L, Alizon M (1987) Genome organization and transactivation of the human immunodeficiency virus type 2. Nature 326: 662–669

    PubMed  Google Scholar 

  14. Hohenberg H, Mannweiler K, Bohn W, Andresen I, Schröder S (1980) Routine preparation of large surface replicas of freeze-fractured and critical point-dried cell cultures grown on coverslips for hight resolution electron microscopy. Electron Microsc 2: 730–731

    Google Scholar 

  15. Liljas L (1986) The structure of spherical viruses. Prog Biophys Mol Biol 48: 1–36

    PubMed  Google Scholar 

  16. Markham R, Frey S, Hills GJ (1963) Methods for the enhancement of image detail and accentuation of structure in electron microscopy. Virology 20: 88–102

    Google Scholar 

  17. Marx PA, Munn RJ, Munn KI (1988) Computer emulation on thin-section electron microscopy predicts an envelope-associated icosadeltahedral capsid for human immunodeficiency virus. Lab Invest 58: 112–120

    PubMed  Google Scholar 

  18. Mattern CFT (1977) Symmetry in virus architecture. In: Nayak DP (ed) The molecular biology of animal viruses, vol 1. Marcel Dekker, New York Basel, pp 1–40

    Google Scholar 

  19. Nermut MV, Frank H, Schäfer W (1972) Properties of mouse leukemia viruses. III. Electron microscopic appearance as revealed after conventional preparation techniques as well as freeze-drying and freeze-etching. Virology 49: 345–358

    PubMed  Google Scholar 

  20. Özel M, Gelderblom H (1985) Capsid symmetry of viruses of the proposed Birnavirus group. Arch Virol 84: 149–161

    PubMed  Google Scholar 

  21. Özel M, Pauli G, Gelderblom H (1987) The organization of HIV envelope proteins. Eur J Cell Biol 44 [Suppl] 19: 41

    Google Scholar 

  22. Palmer E, Sporborg C, Harrison A, Martin ML, Feorino P (1985) Morphology and immunoelectron microscopy of AIDS virus. Arch Virol 85: 189–196

    PubMed  Google Scholar 

  23. Palmer E Goldsmith CS (1988) Ultrastructure of Human Tetroviruses. J Electron Microsc Tech 8: 3–17

    PubMed  Google Scholar 

  24. Pettersson R, Kääriäinen L, von Bonsdorff C-H, Okerblom N (1971) Structural components of Uukuniemi virus, a noncubical tick-borne arbovirus. Virology 46: 721–729

    PubMed  Google Scholar 

  25. Sarkar NH, Moore DH (1974) Surface structure of mouse mammary tumor virus. Virology 61: 38–55

    PubMed  Google Scholar 

  26. Simionescu N, Simionescu M (1976) Galloylglucose of low molecular weight as mordant in electron microscopy. J Cell Biol 70: 608–621

    PubMed  Google Scholar 

  27. Simons K, Garoff H (1980) The budding mechanisms of enveloped animal viruses. J Gen Virol 50: 1–20

    PubMed  Google Scholar 

  28. Sommer JR (1977) To cationize glass. J Cell Biol 75: 245a

  29. Venable JH, Coggeshall R (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25: 407–408

    PubMed  Google Scholar 

  30. Vogel H, Provencher SW, von Bonsdorff C-H, Adrian M, Dubochet J (1986) Envelope structure of Semliki Forest virus reconstructed from cryo-electron micrographs. Nature 320: 533–535

    PubMed  Google Scholar 

  31. von Bonsdorff C-H, Harrison SC (1975) Sindbis virus glycoproteins form regular icosahedral surface lattice. J Virol 16: 141–145

    PubMed  Google Scholar 

  32. von Bonsdorff C-H, Harrison SC (1978) Hexagonal glycoprotein arrays from Sindbis virus membranes. J Virol 28: 578–583

    PubMed  Google Scholar 

  33. von Bonsdorff C-H, Pettersson R (1975) Surface structure of Uukuniemi virus. J Virol 16: 1296–1307

    PubMed  Google Scholar 

  34. Williams RC, Smith KM (1958) The polyhedral form of the Tipula Iridescent virus. Biochim Biophys Acta 28: 464–469

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. Georg Henneberg on occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özel, M., Pauli, G. & Gelderblom, H.R. The organization of the envelope projections on the surface of HIV. Archives of Virology 100, 255–266 (1988). https://doi.org/10.1007/BF01487688

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01487688

Keywords

Navigation