Skip to main content
Log in

The DNA rearrangement associated with facioscapulohumeral muscular dystrophy involves a heterochromatin-associated repetitive element: Implications for a role of chromatin structure in the pathogenesis of the disease

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant form of muscular dystrophy. The FSHD locus has been linked to the most distal genetic markers on the long arm of chromosome 4. Recently, a probe was identified that detects anEcoRI fragment length polymorphism which segregates with the disease in most FSHD families. Within theEcoRI fragment lies a tandem array of 3.2 kb repeats. In several familial cases and four independent sporadic FSHD mutations, the variation in size of theEcoRI fragment was due to a decrease in copy number of the 3.2 kb repeats. To gain further insight into the relationship between the tandem array and FSHD, a single 3.2 kb repeat unit was characterized. Fluorescencein situ hybridization (FISH) demonstrates that the 3.2 kb repeat cross-hybridizes to several regions of heterochromatin in the human genome. In addition, DNA sequence analysis of the repeat reveals a region which is highly homologous to a previously identified family of heterochromatic repeats, LSau. FISH on interphase chromosomes demonstrates that the tandem array of 3.2 kb repeats lies within 215 kb of the 4q telomere. Together, these results suggest that the tandem array of 3.2 kb repeats, tightly linked to the FSHD locus, is contained in heterochromatin adjacent to the telomere. In addition, they are consistent with the hypothesis that the gene responsible for FSHD may be subjected to position effect variegation because of its proximity to telomeric heterochromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agresti A, Rainaldi G, Lobbiani Aet al. (1987) Chromosomal localization by in situ hybridization of the human Sau3A family of DNA repeats.Hum Genet 75, 326–332.

    PubMed  Google Scholar 

  • Agresti A, Meneveri R, Siccardi AGet al. (1989) Linkage in human heterochromatin between highly divergentSau3A repeats and a new family of repeated DNA sequences (HaeIII family).J Mol Biol 205: 625–631.

    PubMed  Google Scholar 

  • Al-Shawi R, Kinnaird J, Burke J, Bishop JO (1990) Expression of a foreign gene in a line of transgenic mice is modulated by a chromosomal position effect.Mol Cell Biol 10: 1192–1198.

    PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller E, Myers EW, and Lipman DJ (1990) Basic alignment search tool.J Mol Biol 215: 403–410.

    PubMed  Google Scholar 

  • Aparicio OM, Billington BL, Gottschling DE (1991) Modifiers of position effect are shared between telomere and silent mating-type loci inS. cerevisiae.Cell 66: 1279–1287.

    PubMed  Google Scholar 

  • Bates GP, MacDonald ME, Baxendale Set al. (1990) A yeast artificial chromosome telomere clone spanning a possible location of the Huntington disease gene.Am J Hum Genet 46: 762–775.

    PubMed  Google Scholar 

  • Buckle VJ, Kearney L (1993) Untwirling dirvish.Nature Genet 5: 4–5.

    PubMed  Google Scholar 

  • Capel B, Rasberry C, Dyson Jet al. (1993) Deletion of Y chromosome sequences located outside the testis determining region can cause XY female sex reversal.Nature Genet 5: 301–307.

    PubMed  Google Scholar 

  • Carlock LR, Smith D, Wasmuth, JJ. (1986) Genetic counterselective procedure to isolate interspecific cell hybrids containing single human chromosomes: construction of cell hybrids and recombinant DNA libraries specific for human chromsomes 3 and 4.Som Cell Mol Genet 12: 163–174.

    PubMed  Google Scholar 

  • Cattanach BM (1974) Position effect variegation in the mouse.Genet Res 23: 291–306.

    PubMed  Google Scholar 

  • Cook PJ, Hamerton JL (1979) Report of the committee on the genetic constitution of chromosome 1.Cytogenet Cell Genet 25: 9–20.

    PubMed  Google Scholar 

  • Cross S, Lindsey J, Fantes Jet al. (1990) The structure of a subterminal repeated sequence present on many human chromosomes.Nucleic Acids Res 18: 6649–6657.

    PubMed  Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX.Nucleic Acids Res 12: 387–395.

    PubMed  Google Scholar 

  • Dugaiczyk A, Goold R, diSibio G, Myers RM (1992) Improved sequencing of cosmids using new primers and linearized DNA.Nucleic Acids Res 20: 6421–6422.

    PubMed  Google Scholar 

  • Eberl DF, Duyf BJ, Hilliker AJ (1993) The role of heterochromatin in the expression of a heterochromatic gene, the rolled locus ofDrosophila melanogaster.Genetics 134: 277–292.

    PubMed  Google Scholar 

  • Eissenberg JC (1989) Position effect variegation inDrosophila: Towards a genetics of chromatin assembly.Bioessays 11: 14–7.

    PubMed  Google Scholar 

  • Gilbert JR, Stajich Speer MC, Vance JMet al. (1992) Linkage studies in facioscapulohumeral muscular dystrophy (FSHD).Am J Hum Genet 51: 424–427.

    PubMed  Google Scholar 

  • Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions in the mammalian chromosomes using silver staining.Chromosoma 53: 37–50.

    PubMed  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect atS. cerevisiae telomeres: reversible repression ofPolII transcription.Cell 63: 751–762.

    PubMed  Google Scholar 

  • Gottschling DE (1992) Telomere proximal DNA inSaccharomyces cerevisiae is refractory to methyltransferase activityin vivo.Proc Natl Acad Sci USA 89: 4062–4065.

    PubMed  Google Scholar 

  • Grigliatti T (1991) Position effect variegation—an assay for nonhistone chromosomal proteins and chromatin assembly and modifying factors. In Hamkalo BA and Elgin SCR, eds.Methods in Cell Biology: Functional Organization of the Nucleus—A Laboratory Guide. San Diego: Academic Press, Vol 35 pp. 588–625.

    Google Scholar 

  • Hazelrigg T, Levis R, Rubin GM (1984) Transformation ofwhite locus DNA inDrosophila: dosage compensation,zeste interaction, and position effects.Cell 36: 469–481.

    PubMed  Google Scholar 

  • Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement.Proc Natl Acad Sci USA 69: 3394–3398.

    PubMed  Google Scholar 

  • Heng HHQ, Squire J, Tsui L-C (1992) High-resolution mapping of mammalian genes byin situ hybridization to free chromatin.Proc Natl Acad Sci USA 89: 9509–9513.

    PubMed  Google Scholar 

  • Henikoff S (1990) Position-effect variegation after 60 years.Trends Genet 6: 422–426.

    PubMed  Google Scholar 

  • Holmquist GP (1992) Chromosome bands, their chromatin flavors, and their functional features.Am J Hum Genet 51: 17–37.

    PubMed  Google Scholar 

  • Ivens A, Flavin N, Williamson Ret al. (1990) The human homeobox gene HOX7 maps to chromosome 4p16.1 and may be implicated in Wolf-Hirshhorn syndrome.Hum Genet 84: 473–476.

    PubMed  Google Scholar 

  • Jaenisch R, Jahner D, Nobis Pet al. (1981) Chromosomal position and activation of retroviral genomes integrated into the germ line of mice.Cell 24: 519–529.

    PubMed  Google Scholar 

  • James TC, Eissenberg JC, Craig Cet al. (1989) Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein ofDrosophila.Eur J Cell Biol 50: 170–180.

    PubMed  Google Scholar 

  • Lima-de-Faria A (1983)Molecular Evolution and Organization of the Chromosome. Amsterdam: Elsevier Science Publishers, pp. 701–721.

    Google Scholar 

  • Lunt PW, Composton DAS, Harper PS (1989) Estimation of age dependent penetrance in facioscapulohumeral muscular dystrophy.J Med Genet 26: 755–760.

    PubMed  Google Scholar 

  • Lunt PW, Harper PS (1991) Genetic counselling in facioscapulohumeral muscular dystrophy.J Med Genet 28: 655–664.

    PubMed  Google Scholar 

  • Mathews KD, Mills KA, Bosch EPet al. (1992) Linkage localization of facioscapulohumeral muscular dystrophy (FSHD) in 4q35.Am J Hum Genet 51: 428–431.

    PubMed  Google Scholar 

  • Meneveri R, Agresti A, Marozzi Aet al. (1993) Molecular organization and chromosomal location of human GC-rich heterochromatic blocks.Gene 123: 227–234.

    PubMed  Google Scholar 

  • Miklos GLG, John B (1979) Heterochromatin and satellite DNA in man: properties and prospects.Am J Hum Genet 31: 264–280.

    PubMed  Google Scholar 

  • Mills KA, Buetow KH, Xu Yet al. (1992) Genetic and physical mapping on chromosome 4 narrows the localization of the gene for facioscapulohumeral muscular dystrophy (FSHD).Am J Hum Genet 51: 432–439.

    PubMed  Google Scholar 

  • Padberg GW, Lunt PW, Koch M, Fardeau M (1991) Workshop report: diagnostic criteria for facioscapulohumeral muscular dystrophy.Neuromusc Dis 1: 231–234.

    PubMed  Google Scholar 

  • Ried T, Baldini A, Rand TC, Ward DC (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy.Proc Natl Acad Sci USA 89: 1388–1392.

    PubMed  Google Scholar 

  • Saccone S, De Sario A, Valle GD, Bernardi G (1992) The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes.Proc Natl Acad Sci USA 89: 4913–4917.

    PubMed  Google Scholar 

  • Sarfarazi M, Wijmenga C, Upadhyaya Met al. (1992) Regional mapping of facioscapulohumeral muscular dystrophy gene on 4q35: combined analysis of an international consortium.Am J Hum Genet 51: 396–403.

    PubMed  Google Scholar 

  • Schmid M, Vitelli L, Batistoni R (1987) Chromosome banding in amphibia. XI. Constitutive heterochromatin, nucleolus organizers, 18S, 28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae and Pelobatidae.Chromosoma 95: 271–284.

    PubMed  Google Scholar 

  • Singer MF (1982) Highly repeated sequences in mammalian genomes.Int Rev Cytol 76: 67–112.

    PubMed  Google Scholar 

  • Sorensen PD, Lomholt B, Fredericksen S, Tommerup N (1991) Fine mapping of human 5S rRNA genes to chromosome 1q42.11–q42.13.Cytogenet Cell Genet 57: 26–29.

    PubMed  Google Scholar 

  • Spradling AC, Karpen GH (1990) Sixty years of mystery.Genetics 126: 779–784.

    PubMed  Google Scholar 

  • Stadler HS, Padanilam BJ, Beutow K, Murray JC, Solurska M (1992) Identification and genetic mapping of a homeobox gene to the 4p6.1 region of human chromosome 4.Proc Natl Acad Sci USA 89: 11579–11583.

    PubMed  Google Scholar 

  • Tartof KD, Hobbs C, Jones M (1984) A structural basis for variegating position effects.Cell 37: 869–878.

    PubMed  Google Scholar 

  • Therman E (1986)Human Chromosomes. New York: Springer-Verlag.

    Google Scholar 

  • Trask BJ, Pinkel D, van den Engh G (1989) The proximity of DNA sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs.Genomics 5: 710–717.

    PubMed  Google Scholar 

  • Traverse KL, Pardue ML (1989) Studies of He-T DNA sequences in the pericentric regions ofDrosophila chromosomes.Chromosoma 97: 261–271

    PubMed  Google Scholar 

  • Upadhyaya M, Lunt P, Sarfarazi Met al. (1992) The mapping of chromosome 4q markers in relation to facioscapulohumeral muscular dystrophy (FSHD).Am J Hum Genet 51: 404–410.

    PubMed  Google Scholar 

  • van den Engh G, Sachs R, Trask BJ (1992) Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model.Science 257: 1410–1412.

    PubMed  Google Scholar 

  • van Deutekom JCT, Wijmenga C, van Tienhoven EAEet al. (1993) FSHD associated DNA rearrangements are due to large deletions of integral copies of a 3.2 kb tandemly repeated unit.Hum Mol Genet 2: 2037–2042.

    PubMed  Google Scholar 

  • Verma R (ed.) (1988)Heterochromatin. Cambridge, University Press.

    Google Scholar 

  • Wakimoto BT, Hearn MG (1990) The effects of chromosome rearrangements on the expression of heterochromatic genes on chromosome 2L ofDrosophila melanogaster.Genetics 125: 141–154.

    PubMed  Google Scholar 

  • Warrington JA (1992) Physical mapping of the distal portion of the long arm of chromosome 5. PhD Thesis. University of California, Irvine.

    Google Scholar 

  • Waye JS, Willard HF (1989) Human β-satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA.Proc Natl Acad Sci USA 86: 6250–6254.

    PubMed  Google Scholar 

  • Weiffenbach B, Bagley R, Falls Ket al. (1992) Linkage analysis of five chromosome 4 markers localizes the facioscapulohumeral muscular dystrophy (FSHD) gene to distal 4q35.Am J Hum Genet 51: 416–423.

    PubMed  Google Scholar 

  • Weiffenbach B, Dubois J, Storvick Det al. (1993) Mapping the facioscapulohumeral muscular dystrophy gene is complicated by chromosome 4q35 recombination events.Nature Genet 4: 165–169.

    PubMed  Google Scholar 

  • Wijmenga C, Frants RR, Brouwer OFet al. (1990) Location of facioscapulohumeral muscular dystrophy gene on chromosome 4.Lancet 336: 651–653.

    PubMed  Google Scholar 

  • Wijmenga C, Padberg GW, Moerer Pet al. (1991) Mapping of facioscapulohumeral muscular dystrophy gene to chromosome 4q35—qter by multipoint linkage analysis and in situ hybridization.Genomics 9: 570–575.

    PubMed  Google Scholar 

  • Wijmenga C, Hewitt JE, Sandkuijl LAet al. (1992a) Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy.Nature Genet 2: 26–30.

    PubMed  Google Scholar 

  • Wijmenga C, Sandkuijl LA, Moerer Pet al. (1992b) Genetic linkage map of facioscapulohumeral muscular dystrophy and five polymorphic loci on chromosome 4q35-qter.Am J Hum Genet 51: 411–415.

    PubMed  Google Scholar 

  • Wijmenga C, Wright TC, Baan MJet al. (1993) Physical mapping and YAC-cloning connects four genetically distinct 4qter loci (D4S163, D4S139, D4F35S1 and D4F104S1) in the FSHD generegion.Hum Mol Genet 2: 1667–1672.

    PubMed  Google Scholar 

  • Winokur ST, Schutte B, Weiffenbach Bet al. (1993) A radiation hybrid map of 15 loci on the distal long arm of chromosome 4, the region containing the gene responsible for facioscapulohumeral muscular dystrophy (FSHD).Am J Hum Genet 53: 874–880.

    PubMed  Google Scholar 

  • Wright TC, Wijmenga C, Clark LNet al. (1993) Fine mapping of the FSHD gene region orientates the rearranged fragment detected by the probe p13E-11.Hum Mol Genet 2: 1673–1678.

    PubMed  Google Scholar 

  • Wu JC, Manuelidis L (1980) Sequence definition and organization of a human repeated DNA.J Mol Biol 142: 363–386.

    PubMed  Google Scholar 

  • Youngman S, Bates GP, Williams Set al. (1992) The telomeric 60 kb of chromsome arm 4p is homologous to telomeric regions on 13p, 15p, 21p, and 22p.Genomics 14: 350–356.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Schutte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winokur, S.T., Bengtsson, U., Feddersen, J. et al. The DNA rearrangement associated with facioscapulohumeral muscular dystrophy involves a heterochromatin-associated repetitive element: Implications for a role of chromatin structure in the pathogenesis of the disease. Chromosome Res 2, 225–234 (1994). https://doi.org/10.1007/BF01553323

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01553323

Key words

Navigation