Skip to main content
Log in

The structure and function of α-actinin

  • Review
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Arimura, C., Suzuki, T., Yanagisawa, M., Imamura, M., Hamada, Y. &Masaki, T. (1988) Primary structure of chicken skeletal muscle and fibroblastα-actinin deduced from cDNA sequences.Eur. J. Biochem. 177, 649–55.

    Google Scholar 

  • Ball, E. H., Freitag, C. &Gurofsky, S. (1986) Vinculin interaction with permeabilised cells: disruption and reconstitution of a binding site.J. Cell Biol. 102, 641–8.

    Google Scholar 

  • Baron, M. D., Davison, M. D., Jones, P. &Critchley, D. R. (1987a) The sequence of chickα-actinin reveals homologies to spectrin and calmodulin.J. biol. Chem. 262, 17623–29.

    Google Scholar 

  • Baron, M. D., Davison, M. D., Jones, P., Patel, B. &Critchley, D. R. (1987b) Isolation and characterisation of cDNA encoding a chickα-actinin.J. biol. Chem. 262, 2258–61.

    Google Scholar 

  • Belkin, A. M. &Koteliansky, V. E. (1987) Interaction of iodinated vinculin, metavinculin andα-actinin with cytoskeletal proteins.FEBS Lett. 220, 291–94.

    Google Scholar 

  • Bennett, J. P., Zaner, K. S. &Stossell, T. P. (1984) Isolation and some properties of macrophageα-actinin: evidence that it is not an actin gelling protein.Biochemistry 23, 5081–6.

    Google Scholar 

  • Bretscher, A., Vandekerckhove, J. &Weber, K. (1979)α-actinins from chicken skeletal muscle and smooth muscle show considerable chemical and immunological differences.Eur. J. Biochem. 100, 237–43.

    Google Scholar 

  • Burn, P., Rotman, A., Mayer, R. K. &Burger, M. M. (1985) Diacylglycerol in largeα-actinin/actin complexes in the cytoskeleton of activated platelets.Nature 314, 469–72.

    Google Scholar 

  • Burridge, K. &Feramisco, J. R. (1981) Non-muscleα-actinins are calcium sensitive actin binding proteins.Nature 294, 565–7.

    Google Scholar 

  • Burridge, K. &Feramisco, J. R. (1982)α-actinin and vinculin from non-muscle cells: calcium sensitive interactions with actin.Cold Spring Harbor Symp. 46, 587–97.

    Google Scholar 

  • Chen, W-L. &Singer, S. J. (1982) Immunoelectron microscopic studies of the sites of substratum and cell-cell contacts in cultured fibroblasts.J. Cell Biol. 95, 205–22.

    Google Scholar 

  • Chen, W-L., Wang, J., Hasegawa, T., Yamada, S. S. &Yamada, K. M. (1986) Regulations of fibronectin receptor distribution by transformation, exogenous fibronectin, and synthetic peptides.J. Cell Biol. 103, 1649–61.

    Google Scholar 

  • Craig, S. W. &Pardo, J. V. (1979)α-actinin localisation in the junctional complex of intestinal epithelial cells.J. Cell Biol. 80, 203–10.

    Google Scholar 

  • Davidson, M. D., Baron, M. D., Wootton, J. C. &Critchley, D. R. (1989) Structural analysis of homologous repeated domains inα-actinin and spectrin.Int. J. Biol. Macro. in press.

  • Davison, M. D. &Critchley, D. R. (1988)α-actinin and the DMD protein contain spectrin-like repeats.Cell 52, 159–60.

    Google Scholar 

  • Drenckhahn, D. &Mannherz, H. G. (1983) Distribution of actin and the actin-associated proteins myosin, tropomyosin,α-actinin, vinculin and villin in rat and bovine exocrine glands.Eur. J. Cell Biol. 30, 167–76.

    Google Scholar 

  • Duhaiman, A. S. &Bamburg, J. R. (1984) Isolation of brainα-actinin. Its characterisation and comparison of its properties with those of muscleα-actinins.Biochemistry 23, 1600–8.

    Google Scholar 

  • Endo, T. &Masaki, T. (1982) Molecular properties and functions in vitro of chicken smooth muscleα-actinin in comparison with those of striated muscleα-actinins.J. Biochem. 92, 1457–68.

    Google Scholar 

  • Endo, T. &Masaki, T. (1984) Differential expression and distribution of chicken skeletal and smooth muscleα-actinins during myogenesis in culture.J. Cell Biol. 99, 2322–32.

    Google Scholar 

  • Feener, C. A., Koenig, M. &Kunkel, L. M. (1989) Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus.Nature 338, 509–11.

    Google Scholar 

  • Feramisco, J. R. &Burridge, K. (1980) A rapid purification ofα-actinin, filamin and 130 000 dalton protein from smooth muscle.J. biol. Chem. 225, 1194–9.

    Google Scholar 

  • Gache, Y., Landon, F. &Olonucki, A. (1984) Polymorphism ofα-actinin from human blood platelets.Eur. J. Biochem. 141, 57–61.

    Google Scholar 

  • Geiger, B. (1983) Membrane cytoskeletal interactionsBiochim. Biophys. Res. Comm. 737, 305–41.

    Google Scholar 

  • Geiger, B., Avnur, Z. &Schlessinger, J. (1982) Restricted mobility of membrane constituents in cell substrate focal contacts of chicken fibroblasts.J. Cell Biol. 93, 495–500.

    Google Scholar 

  • Geiger, B., Avnur, Z., Kreis, T. E. &Schlessinger, J. (1984) The dynamics of cytoskeletal organisation in areas of cell contact.Cell Muscle Motil. 5, 195–234.

    Google Scholar 

  • Geiger, B., Dutton, A. H., Tokuyasu, K. T. &Singer, S. J. (1986) Immunoelectron microscope studies of membrane microfilament interactions: Distributions ofα-actinin, tropomyosin and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells.J. Cell Biol. 91, 614–30.

    Google Scholar 

  • Geiger, B., Tokuyasu, K. T. &Singer, S. J. (1979) Immunocytochemical localisation ofα-actinin in intestinal epithelial cells.Proc. Natl. Acad. Sci. U.S.A. 76, 2833–7.

    Google Scholar 

  • Hammonds, R. G. (1987) Protein sequence of DMD gene is related to actin binding domain ofα-actinin.Cell 51, 1.

    Google Scholar 

  • Herman, B. &Pledger, W. J. (1985) PDGF induced alterations in vinculin and actin distribution in BALB/c-3T3 cells.J. Cell Biol. 100, 1031–40.

    Google Scholar 

  • Hoffman, E. P., Watkins, S. C., Slayter, H. S. &Kunkel, L. M. (1989) Detection of a specific isoform ofα-actinin with antisera directed against dystrophin.J. Cell Biol. 108, 503–10.

    Google Scholar 

  • Imamura, M., Endo, T., Kuroda, M., Tanaka, T. &Masaki, T. (1988) Substructure and higher structure of chicken smooth muscleα-actinin molecule.J. biol. Chem. 263, 7800–5.

    Google Scholar 

  • Jockusch, E. M. &Isenberg, G. (1981) Interaction ofα-actinin and vinculin with actin: Opposite effects on filament network formation.Proc. Natl. Acad. Sci. U.S.A. 78, 3005–9.

    Google Scholar 

  • Koenig, M., Monaco, A. P. &Kunkel, L. M. (1988) The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein.Cell 53, 219–28.

    Google Scholar 

  • Landon, F., Gache, Y., Touitou, H. &Olomucki, A. (1985) Properties of two isoforms of human blood plateletα-actinins.Eur. J. Biochem. 153, 231–7.

    Google Scholar 

  • Lazarides, E. &Burridge, K. (1975)α-actin: Immunofluorescent localisation of a muscle structural protein in non-muscle cells.Cell 6, 289–98.

    Google Scholar 

  • McKenna, N. M., Miegs, J. B. &Wang, Y-L. (1985) Exchangeability ofα-actinin in living cardiac fibroblasts and muscle cells.J. Cell Biol. 101, 2223–32.

    Google Scholar 

  • Meyer, R. K., Schindler, H. &Burger, N. M. (1982)α-actinin interacts specifically with model membranes containing glycerides and fatty acids.Proc. Natl. Acad. Sci. U.S.A. 79, 4280–4.

    Google Scholar 

  • Miegs, J. B. &Wang, Y-L. (1986) Reorganisation ofα-actinin and vinculin induced by phorbol esters in living cells.J. Cell Biol. 102, 1430–8.

    Google Scholar 

  • Mimura, N. &Asano, A. (1986) Isolation and characterisation of a conserved actin binding domain from rat hepatic actinogelin, rat skeletal muscle and chicken gizzardα-actinins.J. biol. Chem. 261, 10680–7.

    Google Scholar 

  • Mimura, N. &Asano, A. (1987) Further characterisation of a conserved actin binding 27 kDa fragment of actinogelin andα-actinins and mapping of their binding sites on the actin molecule by chemical cross-linking.J. biol. Chem. 262, 4717–23.

    Google Scholar 

  • Narvanen, O., Narvanen, A., Waserius, V-M., Partanen, P. &Vitranen, I. (1987) A monoclonal antibody against a synthetic peptide reveals common structures among spectrins andα-actinin.FEBS Lett. 224, 156–60.

    Google Scholar 

  • Noegel, A., Witke, W. &Schleicher, M. (1987) Calcium sensitive non-muscleα-actinin containsEF-hand structures and highly conserved regions.FEBS Lett. 221, 391–6.

    Google Scholar 

  • Nudel, U., Zuk, D., Einat, P., Zeelan, E., Levy, Z., Neuman, S. &Yaffe, D. (1989) DMD gene product is not identical in muscle and brain.Nature 337, 76–8.

    Google Scholar 

  • Ohanian, V., Wolfe, L. C., John, K., Pinder, J. C., Lux, S. E. &Gratzer, W. B. (1984) Analysis of the ternary interaction of the red cell membrane skeletal proteins spectrin, actin & 4.1.Biochemistry 23, 4416–20.

    Google Scholar 

  • Ohtaki, T., Tsukita, S., Mimura, N., Tsukita, S. &Asano, A. (1985) Interaction of actinogelin with actin.Eur. J. Biochem. 153, 609–20.

    Google Scholar 

  • Podlubnaya, Z. A., Tskhovnebova, L. A., Zaalishvili, M. M. &Stefanenko, G. A. (1975) Electron microscopic study ofα-actininJ. Mol. Biol. 92, 357–9.

    Google Scholar 

  • Rosenfeld, G. C., Hou, D. C., Dingus, J., Meza, I. &Bryan, J. (1985) Isolation and partial characterisation of human platelet vinculin.J. Cell Biol. 100, 669–76.

    Google Scholar 

  • Ruoslahti, E. &Pierschbacher, M. D. (1987) New perspectives in cell adhesion: RGD and integrins.Science 238, 491–7.

    Google Scholar 

  • Schleicher, M., Noegel, A., Schwarz, T., Wallraff, E., Brink, N., Faix, J. Gerisch, G. &Isenberg, G. (1988) ADictyostelium mutant with severe defects inα-actinin: its characterisation using cDNA probes and monoclonal antibodies.J. Cell Sci. 90, 59–66.

    Google Scholar 

  • Speicher, D. W. &Marchesi, V. T. (1984) Erythrocyte spectrin is comprised of many homologous triple helical segments.Nature 311, 177–80.

    Google Scholar 

  • Stickel, S. K. &Wang, Y-L. (1987)α-actinin containing aggregates in transformed cells are highly dynamic structures.J. Cell Biol. 104, 1521–26.

    Google Scholar 

  • Stickel, S. K. &Wang, Y-L. (1988) Synthetic peptide GRGDS induces dissociation ofα-actinin and vinculin from the sites of focal contacts.J. Cell Biol. 107, 1231–9.

    Google Scholar 

  • Tokuyasu, K. T., Dutton, A. H., Geiger, B. &Singer, S. J. (1981) Ultrastructure of chicken cardiac muscle as studied by double immunolabelling in electron microscope.Proc. Natl. Acad. Sci. U.S.A. 78, 7619–23.

    Google Scholar 

  • Wallraff, E., Schleicher, N., Modersitzki, M., Rieger, D., Isenberg, G. &Gerisch, G. (1986) Selection ofDictyostelium mutants defective in cytoskeletal proteins: Use of an antibody that binds to the ends ofα-actinin rods.EMBO J. 5, 61–5.

    Google Scholar 

  • Wasenius, V-M., Narvanen, O., Lehto, V-P. &Saraste, M. (1987)α-actinin and spectrin have common structural domains.FEBS Lett. 221, 73–6.

    Google Scholar 

  • Wasenius, V-M., Saraste, M., Salven, P., Eramaa, M., Holm, L. &Sclehto, V-P. (1989) Primary structure of the brainα-spectrin.J. Cell Biol. 108, 79–93.

    Google Scholar 

  • Wilkins, J. A. &Lin, S. (1982) High affinity interaction of vinculin with actin filamentsin vitro. Cell28, 83–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchard, A., Ohanian, V. & Critchley, D. The structure and function of α-actinin. J Muscle Res Cell Motil 10, 280–289 (1989). https://doi.org/10.1007/BF01758424

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01758424

Navigation