Skip to main content
Log in

Comparison of areal and estimated volumetric bone mineral density values between older men and women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

We compared areal bone mineral density (BMD) of the total body (TBMD), antero-posterior lumbar spine at L3 (APS), lateral spine at L3 (LS) and femoral neck (FN). In order to understand better the effect of gender-related size differences on BMD, we also compared the estimated volumetric BMD at L3 (VLS) and the femoral neck (VFN). Subjects were asymptomatic women (n=22) and men (n=44) with an age range of 58–79 years. BMD at each site was measured by dual-energy X-ray absorptiometry using a Hologic 2000 in array mode. Results of the statistical analyses (ANOVA) showed the men to have significantly greater BMD at all areal sites [APS, LS (p<0.05); FN (p<0.01); TBMD (p<0.001)]. The two estimated volumetric comparisons, however, showed no gender differences. Results demonstrate how measures from areal BMD measures can be misleading when comparing groups of different size. In older men and women planar measures may overestimate gender differences in BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper C, Atkinson EJ, O'Fallon WM, Melton LJ. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota. J. Bone Miner Res 1992;7:221–7.

    PubMed  Google Scholar 

  2. Marcus R. Skeletal aging: understanding the functional and structural basis of osteoporosis. Trends Endocrinol Metab 1991;2:53–8.

    Google Scholar 

  3. Jackson JA, Kleerekoper M. Osteoporosis in men: diagnosis, pathophysiology, and prevention. Medicine 1990;69:137–52.

    PubMed  Google Scholar 

  4. Nilas L, Christiansen C. Bone mass and its relationship to age and the menopause. J Clin Endocrinol Metab 1987;65:696–702.

    Google Scholar 

  5. Matkovic V, Ilich J, Hsieh L. Influence of age, sex and diet on bone mass and fracture rate. Osteoporosis Int 1993;Suppl 1:S20–2.

    Google Scholar 

  6. Hannan MT, Felson DT, Anderson JJ. Bone mineral density in elderly men and women: results from the Framingham osteoporosis study. J Bone Miner Res 1992;7:547–53.

    PubMed  Google Scholar 

  7. Burger H, van Daele PLA, Algra D, et al. The association between age and bone mineral density in men and women aged 55 years and over: the Rotterdam Study. Bone Miner 1994;25:1–13.

    PubMed  Google Scholar 

  8. Carter DR, Bouxsein ML, Marcus R. New aproaches for interpreting projected bone densitometry data. J Bone Miner Res 1992;7:137–45.

    PubMed  Google Scholar 

  9. Kroger H, Kotaniemi A, Vainio P, Alhava E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptio-metry. Bone Miner 1992;17:75–85.

    PubMed  Google Scholar 

  10. Genant HK, Gluer CC, Lotz JC. Gender differences in bone density, skeletal geometry, and fracture biomechanics. Radiology 1994;190:636–40.

    PubMed  Google Scholar 

  11. Karantanis AH, Kalef-Ezra JA, Glaros DC. Quantitative computed tomography for bone mineral measurement: technical aspects, dosimetry, normal data and clinical applications. Br J Radiol 1991;64:298–304.

    PubMed  Google Scholar 

  12. Cann CE, Genant HK, Kolb FO, Ettinger B. Quantitative computed tomography for prediction of vertebral fracture risk. Bone 1985;6:1–7.

    PubMed  Google Scholar 

  13. Kalender WA, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, Fraga J. Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Eur J Radiol 1989;9:75–80.

    PubMed  Google Scholar 

  14. Gilsanz V, Boechat MI, Roe TF, Loro ML, Sayre JW, Goodman WG. Gender differences in vertebral body size in children and adolescents. Radiology 1994;190:673–7.

    PubMed  Google Scholar 

  15. Gilsanz V, Boechat MI, Gilsanz R, Loro ML, Roe TF, Goodman WG. Gender differences in vertebral sizes in adults: biomechanical implications. Radiology 1994;190:678–82.

    PubMed  Google Scholar 

  16. Faulkner RA, Bailey DA, Drinkwater DT, Wilkinson AA, Houston CS, McKay HA. Regional and total body bone mineral content, bone mineral density and total body tissue composition in children 8–16 years of age. Calcif Tissue Int 1993;53:7–12.

    PubMed  Google Scholar 

  17. McKay HA, Bailey DA, Wilkinson AA, Houston CS. Familial comparison of bone mineral density at the proximal femur and lumbar spine. Bone Miner 1994;24:95–107.

    PubMed  Google Scholar 

  18. Hologic. Hologic QDR X-ray bone densitometer operator's manual and user's guide. Waltham, Mass: Hologic, 1991.

    Google Scholar 

  19. Katzman DK, Bachrach LK, Carter DR, Marcus R. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 1991;73:1332–9.

    PubMed  Google Scholar 

  20. McKay HA, Bailey DA, Drinkwater DT, Wilkinson AA. The relationship of bone density of the lumbar spine (using three different projection protocols) to proximal femur bone mineral density in 74 asymptomatic premenopausal women. J Bone Miner Res 1992;7(Suppl 1):177.

    Google Scholar 

  21. Reinbold WD, Genant HK, Reiser UJ, Harris ST, Ettinger B. Bone mineral content in early-postmenopausal osteoporotic women and postmenopausal women: comparison of measurement methods. Radiology 1986;160:649–78.

    PubMed  Google Scholar 

  22. Norusis MJ. SPSS base system user's guide. Chicago: SPSS Inc., 1990.

    Google Scholar 

  23. Peck WA. Osteoporosis consensus conference. JAMA 1984;254:799–802.

    Google Scholar 

  24. Kroger H, Laitinen K. Bone mineral density measured by dual-energy x-ray absorptiometry in normal men. Eur J Clin Invest 1992;22:454–60.

    PubMed  Google Scholar 

  25. Gilsanz V, Gibbens DT, Roe TF, et al. Vertebral bone density in children: effect of puberty. Radiology 1988;166:847–50.

    PubMed  Google Scholar 

  26. Reid IR, Plank LD, Evans MC. Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 1992;75:779–82.

    PubMed  Google Scholar 

  27. Kelly PJ, Twomey L, Sambrook PN, Eisman JA. Sex differences in peak adult bone mineral density. J Bone Miner Res 1990;5:1169–75.

    PubMed  Google Scholar 

  28. Mosekilde L, Mosekilde L. Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone 1990;11:67–73.

    PubMed  Google Scholar 

  29. Peel NFA, Eastell R. Diagnostic value of estimated volumetric bone mineral density of the lumbar spine in osteoporosis. J Bone Miner Res 1994;9:317–20.

    PubMed  Google Scholar 

  30. Mazess RB, Barden H, Mautalen C, Vega E. Normalization of spine densitometry. J Bone Miner Res 1994;9:541–8.

    PubMed  Google Scholar 

  31. Cummings SR, Marcus R, Palermo L, Ensrud KE, Genant HK. Does estimating volumetric bone density of the femoral neck improve the prediction of hip fracture? A prospective study. J Bone Miner Res 1994;9:1429–32.

    PubMed  Google Scholar 

  32. Consensus Development Conference. Prophylaxis and treatment of osteoporosis. Am J Med 1991;96:107–10.

    Google Scholar 

  33. Mazess RB. Bone density in diagnosis of osteoporosis: thresholds and breakpoints. Calcif Tissue Int 1987;41:117–8.

    Google Scholar 

  34. Alhava EM. Bone density measurements. Calcif Tissue Int 1991;49(Suppl):21–3.

    Google Scholar 

  35. Nilsson BE, Johnell O, Petersson C. In vivo bone-mineral measurement. Acta Orthop Scand 1990;61:275–81.

    PubMed  Google Scholar 

  36. Riggs BL, Melton LJ. Involutional osteoporosis. N Engl J Med 1986;314:1676–86.

    PubMed  Google Scholar 

  37. Kimmel DB. A paradigm for skeletal strength homeostasis. J Bone Miner Res 1993;8:S515–22.

    PubMed  Google Scholar 

  38. Mazess RB. On aging and bone loss. Clin Orthop 1982;165:239–51.

    PubMed  Google Scholar 

  39. Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP, Melton LJ. Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest 1981;70:716–23.

    Google Scholar 

  40. Mazess RB. Fracture risk: a role for compact bone. Calcif Tissue Int 1990;47:191–3.

    PubMed  Google Scholar 

  41. Faulkner KG, Cummings SR, Black D, Palermo L, Gluer C, Genant HK. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 1993;8:1211–7.

    PubMed  Google Scholar 

  42. Beck TJ, Ruff CB, Scott WW, Plato CC, Tobin JD, Quan CA. Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data Calcif Tissue Int 1992;50:24–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulkner, R.A., McCulloch, R.G., Fyke, S.L. et al. Comparison of areal and estimated volumetric bone mineral density values between older men and women. Osteoporosis Int 5, 271–275 (1995). https://doi.org/10.1007/BF01774017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01774017

Keywords

Navigation