Skip to main content
Log in

Actin binding proteins — lipid interactions

  • Review
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Adams, R. J. &Pollard, T. D. (1989a) Membrane-bound myosin I provides new mechanisms in cell motility.Cell Motil. Cytoskeleton 14, 178–82.

    PubMed  Google Scholar 

  • Adams, R. J. &Pollard, T. D. (1989b) Binding of myosin I to membrane lipids.Nature 340, 565–8.

    PubMed  Google Scholar 

  • Anderson, R. A. &Marchesi, V. T. (1985) Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide.Nature 318, 295–8.

    PubMed  Google Scholar 

  • André, E., Lottspeich, F., Schleicher, M. &Noegel, A. (1988) Severin, gelsolin and villin share a homologous sequence in regions presumed to contain F-actin severing domains.J. Biol. Chem. 263, 722–7.

    PubMed  Google Scholar 

  • Beckerle, M. C. &Yeh, R. K. (1990) Talin: role at sites of cellsubstratum adhesion.Cell Motil. Cytoskeleton 16, 7–13.

    PubMed  Google Scholar 

  • Bennett, V. (1989) The spectrin-actin junction of erythrocyte membrane skeletons.Biochim. Biophys. Acta 988, 107–21.

    PubMed  Google Scholar 

  • Bennett, V. &Stenbuck, P. J. (1979) Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin.J. Biol. Chem. 254, 2533–41.

    PubMed  Google Scholar 

  • Bryan, J. (1988) Gelsolin has three actin binding sites.J. Cell Biol. 106, 1553–62.

    PubMed  Google Scholar 

  • Burn, P. (1988) Amphitropic proteins: a new class of membrane proteins.Trends in Biochem. 13, 79–84.

    Google Scholar 

  • Burn, P., Rotman, A., Meyer, R. K. &Burger, M. M. (1985) Diacylglycerol in largeα-actinin/actin complexes and in the cytoskeleton of activated platelets.Nature 314, 469–72.

    PubMed  Google Scholar 

  • Burn, P. &Burger, M. M. (1987) The cytoskeletal protein vinculin contains transformation sensitive, covalently bound lipid.Science 235, 476–9.

    PubMed  Google Scholar 

  • Burridge, K. &Connell, L. (1983a) A new protein of adhesion plaques and ruffling membranes.J. Cell Biol. 97, 359–67.

    PubMed  Google Scholar 

  • Burridge, K. &Connell, L. (1983b) Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin-membrane interaction.Cell Motil. 3, 405–17.

    PubMed  Google Scholar 

  • Burridge, K., Fath, K., Kelly, T., Nuckolls, G. &Turner, C. (1988) Focal contacts: transmembrane links between the extracellular matrix and the cytoskeleton.Ann. Rev. Cell Biol. 4, 487–525.

    PubMed  Google Scholar 

  • Burridge, K. &Jackman, W. T. (1990) Membrane-cytoskeletal interactions in cell adhesion and locomotion. InBiophysics of the cell surface (edited by Glaser, R. & Gingell, D.) pp. 323–40. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Carraway, K. L. &Carraway, C. A. (1989) Membrane-cytoskeleton interactions in animal cells.Biochim. Biophys. Acta 988, 147–71.

    PubMed  Google Scholar 

  • Carraway, C. A., Sindler, D. &Weiss, M. (1986) Demonstration of the association of the cell surface enzyme 5′-nucleotidase with microvillar microfilaments by phalloidin shift on velocity sedimentation gradients.Biochim. Biophys. Acta 885, 68–73.

    PubMed  Google Scholar 

  • Chaponnier, C., Janmey, P. A. &Yin, H. L. (1986) The actin filament severing domain of plasma gelsolin.J. Cell Biol. 103, 1473–81.

    PubMed  Google Scholar 

  • Cohen, C. M. &Foley, S. F. (1982) The role of band 4.1 in the association of actin with erythrocyte membranes.Biochim. Biophys. Acta 688, 691–701.

    PubMed  Google Scholar 

  • Conzelman, K. A. &Mooseker, M. S. (1986) Re-evaluation of the hydrophobic nature of the 110 kD calmodulin-, actin-, and membrane-binding protein of the intestinal microvillus.J. Cell. Biochem. 30, 271–9.

    PubMed  Google Scholar 

  • Coutu, M. D. &Craig, S. (1988) cDNA-derived sequence of chicken embryo vinculin.Proc. Nat. Acad. Sci. (USA) 85, 8535–9.

    Google Scholar 

  • Dieckhoff, J., Niggemeyer, B., Lietzke, R. &Mannherz, H. G. (1987) Reconstitution of purified chicken gizzard 5′-nucleotidase in phospholipid vesicles.Eur. J. Biochem. 162, 451–9.

    PubMed  Google Scholar 

  • Dill, K. A. (1990) Dominant forces in protein folding.Biochemistry 29, 7133–55.

    PubMed  Google Scholar 

  • Fringeli, U. P., Leutert, P., Thurnhofer, H., Fringeli, M. &Burger, M. M. (1986) Structure-activity relationship in vinculin: An IR/attenuated total reflection spectroscopic and film balance study.Proc. Natl. Acad. Sci. (USA) 83, 1315–9.

    Google Scholar 

  • Geiger, B., Volk, T., Volberg, T. &Bendori, R. (1987) Molecular interactions in adherens-type contacts.J. Cell Sci. (Suppl.) 8, 251–72.

    Google Scholar 

  • Glenney, J. R. &Glenney, P. (1984) The microvillus 110K cytoskeletal protein is an integral membrane protein.Cell 37, 743–1.

    PubMed  Google Scholar 

  • Goldschmidt-Clermont, P., Machesky, L. M., Baldassare, J. J. &Pollard, T. D. (1990a) The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C.Science 247, 1575–8.

    PubMed  Google Scholar 

  • Goldschmidt-Clermont, P. J., Kim, J. W., Machesky, L. M., Rhee, S. G. &Pollard, T. D. (1991)Science (in press).

  • Hartwig, J. H., Chambers, K. A., Hopcia, K. L. &Kwiatkowski, D. J. (1989) Association of profilin with filament-free regions of human leukocyte and platelet membranes and reversible membrane binding during platelet activation.J. Cell Biol. 109, 1571–9.

    PubMed  Google Scholar 

  • Hayden, S. M., Wolenski, J. S. &Mooseker, M. S. (1990) Binding of brush border myosin I to phospholipid vesicles.J. Cell Biol. 111, 443–51.

    PubMed  Google Scholar 

  • Heise, H., Bayerl, T. H., Isenberg, G. &Sackmann, E. (1991) Human platelet P-235, a talin like actin binding protein, binds selectively to mixed lipid bilayers.Biochim. Biophys. Acta 1061, 121–31.

    PubMed  Google Scholar 

  • Hoshimaru, M., Fujio, Y., Sobue, K., Sugimoto, T. &Nakanishi, S. (1989) Immunochemical evidence that myosin I heavy chain like protein is identical to the 110-kilodalton brush border protein.J. Biochem. 106, 455–9.

    PubMed  Google Scholar 

  • Hui, S. W. &Huang, C. (1986) X-ray diffraction evidence for fully interdigitated bilayers of 1-stearoylysophosphatidylcholine.Biochemistry 25, 1330–5.

    PubMed  Google Scholar 

  • Isenberg, G., Leonard, K. &Jockusch, B. M. (1982) Structural aspects of vinculin-actin interactions.J. Mol. Biol. 158, 231–249.

    PubMed  Google Scholar 

  • Isenberg, H., Kenna, J. G., Green, N. M. &Gratzer, W. B. (1981) Binding of hydrophobic ligands to spectrin.FEBS Lett. 129, 109–12.

    PubMed  Google Scholar 

  • Ito, S., Werth, D. K., Richert, N. D. &Pastan, I. (1983) Vinculin phosphorylation by the src kinase.J. Biol. Chem. 258, 14626–31.

    PubMed  Google Scholar 

  • Izzard, C. S. (1988) A precursor of the focal contact in cultured fibroblasts.Cell Motil. Cytoskeleton 10, 137–42.

    PubMed  Google Scholar 

  • Janmey, P. A. &Stossel, T. P. (1987) Modulation of gelsolin function by phosphatidylinositol 4,5-biphosphate.Nature 325, 362–4.

    PubMed  Google Scholar 

  • Janmey, P. A. &Stossel, T. P. (1989) Gelsolin-polyphosphoinositide interaction.J. Biol. Chem. 264, 4825–31.

    PubMed  Google Scholar 

  • Janmey, P. A., Iida, K., Yin, H. L. &Stossel, T. P. (1987) Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast growing end of actin filaments blocked by gelsolin.J. Biol. Chem. 262, 12228–36.

    PubMed  Google Scholar 

  • Jockusch, B. M. &Isenberg, G. (1982) Vinculin and alpha-actinin interaction with actin and effect on microfilament network formation.Cold Spring Harbor Symp. Quant. Biol. 46, 613–23.

    PubMed  Google Scholar 

  • Jung, G., Schmidt, C. J. &Hammer III, J. A. (1989) Myosin I heavy chain genes ofAcanthamoeba castellanii: cloning of a second gene and evidence for the existence of a third isoform.Gene 82, 269–80.

    PubMed  Google Scholar 

  • Keenan, Th., Heid, H. W., Stadler, J., Jarasch, E. D. &Franke, W. W. (1982) Tight attachment of fatty acids to proteins associated with milk lipid globule membrane.Eur. J. Cell Biol. 26, 270–6.

    PubMed  Google Scholar 

  • Kellie, S. &Wigglesworth, N. M. (1987) The cytoskeletal protein vinculin is acylated by myristic acid.FEBS Lett. 213, 428–32.

    PubMed  Google Scholar 

  • Kimelberg, H. &Papahadjopoulos, D. (1971) Phospholipid-protein interactions: membrane permeability correlated with monolayer ‘penetration’.Biochim. Biophys. Acta 233, 805–9.

    PubMed  Google Scholar 

  • Korn, E. D. &Hammer, J. A. (1988) Myosins of nonmuscle cells.Ann. Rev. Biophys. Chem. 17, 23–45.

    Google Scholar 

  • Korn, E. D. &Hammer, J. A. (1990) Myosin I.Curr. Opinion in Cell Biol. 2, 57–61.

    Google Scholar 

  • Kreutzberg, G. W., Reddington, M. &Zimmermann, H. (editors) (1986)Cellular Biology of Ectoenzymes. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Kwiatkowski, D. J., Janmey, P. A., Mole, J. E. &Yin, H. L. (1985) Isolation and properties of two actin-binding domains in gelsolin.J. Biol. Chem. 260, 15232–8.

    PubMed  Google Scholar 

  • Kwiatkowski, D. J., Stossel, T. P., Orkin, S. H., Mole, J. E., Colten, H. R. &Yin, H. L. (1986) Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain.Nature 323, 455–8.

    Google Scholar 

  • Kwiatkowski, D. J., Janmey, P. A. &Yin, H. L. (1989) Identification of critical functional and regulatory domains in gelsolin.J. Cell Biol. 108, 1717–26.

    PubMed  Google Scholar 

  • Lassing, I. &Lindberg, U. (1985) Specific interaction between phosphatidylinositol 4,5-biphosphate and profilactin.Nature 314, 472–4.

    PubMed  Google Scholar 

  • Lassing, I. &Lindberg, U. (1988a) Evidence that the phosphatidylinositol cycle is linked to cell motility.Exp. Cell Res. 174, 1–15.

    PubMed  Google Scholar 

  • Lassing, I. &Lindberg, U. (1988b) Specificity of the interaction between phosphatidylinositol 4,5-biphosphate and the profilin: actin complex.J. Cell. Biochem. 37, 255–67.

    PubMed  Google Scholar 

  • Lisanti, M. P., Rodriguez-Boulan, E. &Saltiel, A. R. (1990) Emerging functional roles for the glycosyl-phosphatidylinositol membrane protein anchor.J. Membrane Biol. 117, 1–10.

    Google Scholar 

  • Low, M. G. (1989) The glycosyl-phosphatidylinositol anchor of membrane proteins.Biochim. Biophys. Acta 988, 427–54.

    PubMed  Google Scholar 

  • Luzio, J. P., Baron, M. D. &Bailyes, E. M. (1987)Mammalian Ectoenzymes (edited by Kenny, A. J. & Turner, A. J.) Elsevier, Amsterdam, pp. 111–38.

    Google Scholar 

  • Maksymiw, R., Sen-Fang, S., Gaub, H. &Sackmann, E. (1987) Electrostatic coupling of spectrin dimers to phosphatidylserine containing lipid lamellae.Biochemistry 26, 2983–90.

    PubMed  Google Scholar 

  • Mannherz, H. G. &Rohr, G. (1978) 5′-nucleotidase reverses inhibitory action of actin on pancreatic deoxyribonuclease I.FEBS Lett. 95, 284–9.

    PubMed  Google Scholar 

  • Marsh, D. (1990) Lipid-protein interactions in membranes.FEBS Lett. 268, 371–5.

    PubMed  Google Scholar 

  • Mason, J. T., Huang, C. &Biltonen, R. L. (1981) Calorimetric investigations of saturated mixed-chain phosphatidylcholine bilayer dispersions.Biochemistry 20, 6086–92.

    PubMed  Google Scholar 

  • Mayer, L. D., Hope, M. J. &Cullis, P. R. (1986) Vesicles of variable sizes produced by a rapid extrusion procedure.Biochim. Biophys. Acta 858, 161–8.

    PubMed  Google Scholar 

  • Meyer, R. K., Schindler, H. &Burger, M. M. (1982)α-actinin interacts specifically with model membranes containing glycerides and fatty acids.Proc. Natl. Acad. Sci. (USA) 79, 4280–4.

    Google Scholar 

  • Meyer, R. K. (1989) Vinculin-lipid monolayer interactions: a model for focal contact formation.Eur. J. Cell Biol. 50, 491–9.

    PubMed  Google Scholar 

  • Meyer, R. K. &Aebi, U. (1989) Biochemical and structural analysis of the interaction ofα-actinin with actin filaments and lipids. InSeries in Biophysics Vol. III (edited by Engel, A. & Aebi, U.) Springer, pp. 57–9.

  • Misumi, Y., Ogata, S., Ohkubo, K., Hirose, S. &Ikehara, Y. (1990) Primary structure of human placental 5′-nucleotidase and identification of the glycolipid anchor in the mature form.Eur. J. Biochem. 191, 563–9.

    PubMed  Google Scholar 

  • Miyata, H., Bowers, B. &Korn, E. D. (1989) Plasma membrane association ofAcanthamoeba myosin I.J. Cell Biol. 109, 1519–28.

    PubMed  Google Scholar 

  • Mombers, C., De Gier, J., Demel, R. A. &Van Deenen, L. L. M. (1980) Spectrin phospholipid interaction — A monolayer study.Biochim. Biophys. Acta 603, 52–62.

    PubMed  Google Scholar 

  • Niggli, V., Dimitrov, D. P., Brunner, J. &Burger, M. M. (1986) Interaction of the cytoskeletal component vinculin with bilayer structures analyzed with a photoactivatable phospholipid.J. Biol. Chem. 261, 6912–8.

    PubMed  Google Scholar 

  • Niggli, V. &Burger, M. M. (1987) Interaction of the cytoskeleton with the plasma membrane.J. Membrane Biol. 100, 97–121.

    Google Scholar 

  • Niggli, V., Sommer, L., Brunner, J. &Burger, M. M. (1988) Interaction of the cytoskeletal protein vinculin with membranes in intact cells. InStructure and function of the cytoskeleton (edited by Rousset, B.) vol. 171, pp. 121–126. Paris: Colloque INSERM/John Libbey Eurotext Ltd.

    Google Scholar 

  • O'Leary, T. J. &Levin, I. W. (1984) Raman spectroscopic study of an interdigitated lipid bilayer dipalmitoylphosphatidylcholine dispersed in glycerol.Biochim. Biophys. Acta 776, 185–9.

    PubMed  Google Scholar 

  • Otto, J. J. (1990) Vinculin. Cell Motil. and the Cytoskel.16, 1–6.

    Google Scholar 

  • Parise, L. V. &Phillips, D. R. (1986) Reconstitution of the purified platelet fibrinogen receptor.J. Biol. Chem. 260, 10698–707.

    Google Scholar 

  • Pollard, T. D. &Korn, E. D. (1973)Acanthamoeba myosin I. Isolation fromAcanthamoeba castellanii of an enzyme similar to muscle myosin.J. Biol. Chem. 248, 4682–90.

    PubMed  Google Scholar 

  • Pollard, T. D. &Cooper, J. A. (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and function.Ann. Rev. Biochem. 55, 987–1035.

    Google Scholar 

  • Rees, D. J. G., Ades, S. E., Singer, S. J. &Hynes, R. O. (1990) Sequence and domain structure of talin.Nature 347, 685–9.

    PubMed  Google Scholar 

  • Rotman, A., Heldman, J. &Linder, S. (1982) Association of membrane and cytoplasmic proteins with the cytoskeleton in blood platelets.Biochemistry 21, 1713–9.

    PubMed  Google Scholar 

  • Ruhnau, K. &Wegner, A. (1988) Evidence for direct binding of vinculin to actin filaments.FEBS Lett. 228, 105–8.

    PubMed  Google Scholar 

  • Ruocco, M. J., Makriyannis, A. &Siminovitch, D. (1985a) Deuterium NMR investigation of ether- and ester-linked phophatidylcholine bilayers.Biochemistry 24, 4844–51.

    PubMed  Google Scholar 

  • Ruocco, M. J., Siminovitch, D. G. &Griffin, R. G. (1985b) Comparative study of the gel phases of ether- and esterlinked phosphatidylcholines.Biochemistry 24, 2406–11.

    PubMed  Google Scholar 

  • Rybicki, A. C., Heath, R., Lubin, B. &Schwartz, R. (1988) Human erythrocyte protein 4.1 is a phosphatidylserine binding protein.J. Clin. Invest. 81, 255–260.

    PubMed  Google Scholar 

  • Sato, S. B. &Onishi, S. (1983) Interaction of a peripheral protein of the erythrocyte membrane, band 4.1, with phosphatidylserine-containing liposomes and erythrocyte inside-out vesicles.Eur. J. Biochem. 130, 19–25.

    PubMed  Google Scholar 

  • Scheel, J., Ziegelbauer, K., Kupke, T., Humbel, B. M., Noegel, A., Gerisch, G. &Schleicher, M. (1989) Hisactophilin, a histidine-rich actin-binding protein fromDictyostelium discoideum.J. Biol. Chem. 264, 2832–9.

    PubMed  Google Scholar 

  • Schleicher, M., André, E., Hartmann, H. &Noegel, A. (1988) Actin-binding proteins are conserved from slime molds to man.Dev. Genetics 9, 521–30.

    Google Scholar 

  • Shiffer, K. A., Goerke, J., Düzgünes, N., Fedor, J. &Shohet, St. (1988) Interaction of erythrocyte protein 4.1 with phospholipids, a monolayer and liposome study.Biochim. Biophys. Acta 937, 269–80.

    PubMed  Google Scholar 

  • Sikorski, A. F. &Kuczek, M. (1985) Labelling of erythrocyte spectrinin situ with phenylisothiocynate.Biochim. Biophys. Acta 820, 147–53.

    PubMed  Google Scholar 

  • Siminovitsch, D. J., Wong, P. T. &Mantsch, H. H. (1987) High pressure infrared spectroscopy of ether- and ester-linked phosphatidylcholine aqueous dispersions.Biophys. J. 51, 465–73.

    PubMed  Google Scholar 

  • Stochaj, U., Flocke, K., Mathes, W. &Mannherz, H. G. (1989) 5′-nucleotidase of chicken gizzard and human pancreatic adenocarcinoma cells are anchored to the plasma membrane via a phosphatidylinositol-glycan.Biochem. J. 262, 33–40.

    PubMed  Google Scholar 

  • Stochaj, U., Richter, H. &Mannherz, H. G. (1990) Chicken gizzard 5′-nucleotidase is a receptor for the extracellular matrix component fibronectin.Eur. J. Cell Biol. 51, 335–8.

    PubMed  Google Scholar 

  • Stossel, T. P. (1990) Actin-membrane interactions in eukaryotic mammalian cells. InCurrent topics in membranes and transport (edited by J. F. Hoffman & Giebisch, G.) Vol. 36, pp. 97–107. NY Academic Press.

    Google Scholar 

  • Stossel, T. P., Chaponnier, C., Ezzell, R. M., Hartwig, J. H., Janmey, P. A., Kwiatkowski, D. J. &Lind, S. E. (1985) Nonmuscle actin-binding proteins.Ann. Rev. Biol. 1, 353–402.

    Google Scholar 

  • Stratford, C. A. &Brown, S. S. (1985) Isolation of an actinbinding protein from membranes ofDictyostelium discoideum.J. Cell Biol. 100, 727–35.

    PubMed  Google Scholar 

  • Tendian, S. W. &Lentz, B. R. (1990) Evaluation of membrane phase behaviour as a tool to detect extrinsic protein induced domain formation: binding of prothrombin to phosphatidylserine/phosphatidylcholine vesicles.Biochemistry 29, 6720–9.

    PubMed  Google Scholar 

  • Van Paridon, P.A., De Kruijff, B., Ouwerkerk, K. &Wirtz, W. A. (1986) Polyphosphoinositides undergo charge neutralization in the physiological pH range: a31P-NMR study.Biochim. Biophys. Acta 877, 216–9.

    PubMed  Google Scholar 

  • Way, M., Gooch, J., Pope, B. &Weeds, A. G. (1989) Expression of human plasma gelsolin inEscherichia coli and disection of actin binding sited by segmental deletion mutagenesis.J. Cell Biol. 109, 593–605.

    PubMed  Google Scholar 

  • Westmeyer, A., Ruhnau, K., Wegner, A. &Jockusch, B. M. (1990) Antibody mapping of functional domains in vinculin.EMBO J. 9, 2071–8.

    PubMed  Google Scholar 

  • Wuesthube, L. J. &Luna, E. J. (1987) F-actin binds to the surface of ponticulin, a 17-kD integral glycoprotein from Dictyostelium plasma membranes.J. Cell Biol. 105, 1741–51.

    PubMed  Google Scholar 

  • Yin, H. L. (1988) Gelsolin: Calcium- and polyphosphoinositide-regulated actin-modulating protein.Bio. Essays 7, 176–9.

    Google Scholar 

  • Yin, H. L., Iida, K. &Janmey, P. A. (1988) Identification of a polyphosphoinositide-modulated domain in gelsolin which binds to the sides of actin filaments.J. Cell Biol. 106, 805–12.

    PubMed  Google Scholar 

  • Yin, H. L., Janmey, P. A. &Schleicher, M. (1990) Severin is a gelsolin prototype.FEBS Lett. 264, 78–80.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isenberg, G. Actin binding proteins — lipid interactions. J Muscle Res Cell Motil 12, 136–144 (1991). https://doi.org/10.1007/BF01774032

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01774032

Keywords

Navigation