Skip to main content
Log in

Human breast cancer cell line xenografts as models of breast cancer — The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines

  • Human breast tumor xenografts
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

The ability to maintain and study human tissues in anin vivo environment has proved to be a valuable tool in breast cancer research for several decades. The most widely studied tissues have been xenografts of established human breast cancer cell lines into athymic nude mice. Human breast tumor xenografts provide the opportunity to study various important interactions between the tumor and host tissues, including endocrinologic, immunologic, and tumor-stroma interactions. The nude mouse is not the only immune-deficient recipient system in which to study xenografts. Additional single and combined mutant strains have been used successfully, including mice homozygous for the severe combined immune deficiency mutation (scid), both the beige (bg) and nude (nu) mutations in combination (bg/nu), and mice bearing the combinedbg/nu/xid mutations. The differing immunobiologies are discussed, with particular reference to the immunobiology of breast cancer, as are the characteristics of several of the more frequently utilized breast cancer xenografts and cell lines. The ability of several endocrine treatments to modulate effectors of cell mediated immunity,e.g., estrogens and antiestrogens, and the effect of site of inoculation on tumor take and metastasis, also are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Steel GG, Courtenay VD, Peckham MJ: The response to chemotherapy of a variety of human tumour xenografts. Br J Cancer 47:1–15, 1983

    PubMed  Google Scholar 

  2. Soule HD, Vasquez J, Long A, Albert S, Brennan M: A human cell line from a pleural effusion derived from a human breast carcinoma. J Natl Cancer Inst 51:1409–1416, 1973

    PubMed  Google Scholar 

  3. Keydar I, Chen L, Karby S, Weiss FR, Delarea J, Radu M, Chaitcik S, Brenner HJ: Establishment and characterization of a cell line of human carcinoma origin. Eur J Cancer 15:659–670, 1979

    PubMed  Google Scholar 

  4. Engel LW, Young NA, Tralka TS, Lippman ME, O'Brien SJ, Joyce MJ: Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res 38:3352–3364, 1978

    PubMed  Google Scholar 

  5. Clarke R:In vitro models of human breast cancer.In: Harris JR, Hellman S, Lippman ME, Morrow M (eds) Diseases of the Breast. J.B. Lippincott, Philadelphia, 1995, pp 245–261

    Google Scholar 

  6. Black MM, Zachrau RE, Hankey BE, Wesley M: Skin window reactivity to autologous breast cancer. An index of prognostically significant cell-mediated immunity. Cancer 62:72–83, 1988

    PubMed  Google Scholar 

  7. Humphrey LJ, Singla O, Volenec FJ: Immunologic responsiveness of the breast cancer patient. Cancer 46:893–898, 1980

    PubMed  Google Scholar 

  8. Strayer DR, Carter WA, Brodsky I: Familial occurrence of breast cancer is associated with reduced natural killer cytotoxicity. Breast Cancer Res Treat 7:187–192, 1986

    PubMed  Google Scholar 

  9. An T, Sood U, Pietruk T, Cummings G: In situ quantitation of inflammatory mononuclear cells in ductal infiltrating breast carcinoma. Am J Path 128:52–60, 1987

    PubMed  Google Scholar 

  10. Contreras OO, Stoliar A: Immunologic changes in human breast cancer. Eur J Gynecol Oncol 9:502–514, 1988

    Google Scholar 

  11. Akimoto M, Ishii H, Nakajima Y, Iwasaki H: Assessment of host immune response in breast cancer patients. Cancer Detect Prev 9:311–317, 1986

    PubMed  Google Scholar 

  12. Horst HA, Horny HP: Characterization and frequency distribution of lymphoreticular infiltrates in axillary lymph node metastases of invasive ductal carcinoma of the breast. Cancer 60:3001–3007, 1987

    PubMed  Google Scholar 

  13. Bonilla F, Alvarez-Mon M, Merino F, de la Hera A: IL-2 induces cytotoxic activity in lymphocytes from regional axillary nodes of breast cancer patients. Cancer 61:629–634, 1988

    PubMed  Google Scholar 

  14. Levy SM, Herberman RB, Whiteside T, Sanzo K: Perceived social support and tumor estrogen/progesterone receptor status as predictors of natural killer cell activity in breast cancer patients. Psychosom Med 52:73–85, 1990

    PubMed  Google Scholar 

  15. Underwood JC, Giri DD, Rooney N, Lonsdale R: Immunophenotype of the lymphoid cell infiltrates in breast carcinomas of low oestrogen receptor content. Br J Cancer 56:744–746, 1987

    PubMed  Google Scholar 

  16. Berry J, Green BJ, Matheson DS: Modulation of natural killer cell activity in stage I postmenopausal breast cancer patients on low-dose aminogluthemide. Cancer Immunol Immunother 24:72–75, 1987

    PubMed  Google Scholar 

  17. Fridman R, Kibbey MC, Royce LS, Zain M, Sweeney TM, Jicha DL, Yannelli JR, Martin GR, Kleinman HK: Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with matrigel. J Natl Cancer Inst 83:769–774, 1991

    PubMed  Google Scholar 

  18. Fridman R, Giaccone G, Kanemoto T, Martin GR, Gazdar AF, Mulshine JL: Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci USA 87:6698–6702, 1990

    PubMed  Google Scholar 

  19. Wheelock EF, Robinson MK: Endogenous control of the neoplastic process. Lab Invest 48:120–139, 1983

    PubMed  Google Scholar 

  20. Blanchard DK, Kavanagh JJ, Sinoviks JG, Cavanagh D: Infiltration of IL-2-inducible killer cells in ascitic fluid and pleural effusions of advanced cancer patients. Cancer Res 48:6321–6327, 1988

    PubMed  Google Scholar 

  21. Talmadge JE, Meyers KM, Prieur DJ, Starkey JR: Role of NK cells in tumour growth and metastasis in beige mice. Nature 284:622–624, 1980

    PubMed  Google Scholar 

  22. Gorelik E, Wiltrout RH, Okumura K, Habu S, Herberman RB: Role of NK cells in the control of metastatic spread and growth of tumor cells in mice. Int J Cancer 30:107–112, 1982

    PubMed  Google Scholar 

  23. Richie JP: Abrogation of hematogenous metastases in a murine model by natural killer cells. Surgery 96:133–138, 1984

    PubMed  Google Scholar 

  24. Vose BM, Moore M: Suppressor cell activity of lymphocytes infiltrating human lung and breast tumors. Int J Cancer 24:579–585, 1979

    PubMed  Google Scholar 

  25. Mantovani A, Allavena P, Sessa C, Bolis G, Mangioni C: Natural killer activity of lymphoid cells isolated from human ascitic ovarian tumors. Int J Cancer 25:573–582, 1980

    PubMed  Google Scholar 

  26. Andriole GL, Mule JJ, Hansen CT, Linehan WM, Rosenberg SA: Evidence that lymphokine-activated killer cells and natural killer cells are distinct based on an analysis of congenitally immunodeficient mice. J Immunol 135:2911–2913, 1985

    PubMed  Google Scholar 

  27. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA: Lymphokine-activated killer cell phenomena. Lysis of natural killer resistant solid tumour cells by IL-2 activated autologous human peripheral blood lymphocytes. J Exp Med 155:1823–1827, 1982

    PubMed  Google Scholar 

  28. Ebert EC, Roberts AI, Devereaux D, Nagase H: Selective immunosuppressive action of a factor produced by colon cancer cells. Cancer Res 50:6158–6161, 1990

    PubMed  Google Scholar 

  29. Kelly PM, Davison RS, Bliss E, McGee JO: Macrophages in human breast disease: a quantitative immunohistochemical study. Br J Cancer 57:174–177, 1988

    PubMed  Google Scholar 

  30. Key ME, Hoyer L, Bucana C, Hanna MG: Mechanisms of macrophage-mediated tumor cytolysis. Adv Exp Med Biol 146:265–311, 1982

    PubMed  Google Scholar 

  31. Hibbs JB, Lambert LH, Remington JS: Control of carcinogenesis: a possible role for the activated macrophage. Science 177:9980–1000, 1972

    Google Scholar 

  32. Fidler IJ: Eradication of cancer metastasis by tumoricidal macrophages. Adv Exp Med Biol 233:415–423, 1988

    PubMed  Google Scholar 

  33. Fidler IJ, Schroit AJ: Recognition and destruction of neoplastic cells by activated macrophages: discrimination of altered self. Biochim Biophys Acta 948:151–173, 1988

    PubMed  Google Scholar 

  34. Whitworth PM, Pak CC, Esgro J, Kleinerman ES, Fidler IJ: Macrophages and cancer. Cancer Metastasis Rev 8:319–351, 1990

    PubMed  Google Scholar 

  35. Meredino RA, Arena A, Liberto MC, Iannello D: Influence of sera from patients affected by neoplasia on some human macrophage functions. Cancer Detect Prev 12:73–80, 1988

    PubMed  Google Scholar 

  36. Ramakrishnan S, Xu FJ, Brandt SJ, Niedel JE: Constitutive production of macrophage colony-stimulating factor by human ovarian and breast cancer cell lines. J Clin Invest 83:921–926, 1989

    PubMed  Google Scholar 

  37. Acero R, Polentarutti N, Bottazzi B, Alberti S, Ricci MR, Bizzi A, Mantovani A: Effect of hydrocortisone on the macrophage content, growth and metastasis of transplanted murine tumors. Int J Cancer 33:95–105, 1984

    PubMed  Google Scholar 

  38. Shultz LD: Single gene models of immunodeficiency diseases.In: Wu B, Zheng J (eds) Immune-deficient Animals in Experimental Medicine. Karger, Basel, 1989, pp 19–26

    Google Scholar 

  39. Pantelouris EM: Absence of thymus in a mutant mouse. Nature 217:370–371, 1968

    PubMed  Google Scholar 

  40. Rygaard J, Povlsen CO: Heterotransplantation of a human malignant tumour to "nude" mice. Acta Path Microbiol Scand 77:758–760, 1969

    PubMed  Google Scholar 

  41. Maruo K, Ueyama Y, Hioki K, Saito M, Nomura T, Tamaoki N: Strain-dependent growth of a human carcinoma in nude mice with different genetic backgrounds: selection of nude mouse strains useful for anticancer agent screening system. Exp Cell Biol 50:115–119, 1982

    PubMed  Google Scholar 

  42. Kindred B: The inception of the response to SRBC by nude mice injected with various doses of congenic or allogeneic thymus cells. Cell Immunol 17:277–284, 1975

    PubMed  Google Scholar 

  43. Jacobson EB, Caporale LH, Thorbecke GJ: Effect of thymus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice. Cell Immunol 13:416–430, 1974

    PubMed  Google Scholar 

  44. Guy-Grand D, Griscelli C, Vassalli P: Peyer's patches, gut IgA, plasma cells and thymic function: study in nude mice bearing thymic grafts. J Immunol 115:361–364, 1975

    PubMed  Google Scholar 

  45. De Sousa M, Pritchard H: The cellular basis of immunological recovery in nude mice after thymus grafting. Immunology 26:769–776, 1974

    PubMed  Google Scholar 

  46. Weisz-Carrington P, Schrater AF, Lamm ME, Thorbecke GJ: Immunoglobulin isotypes in plasma cells of normal and athymic mice. Cell Immunol 44:343–351, 1979

    PubMed  Google Scholar 

  47. Manning JK, Reed ND, Jutila JW: Antibody response to Escherichia coli lipopolysaccharide by congenitally thymusless (nude) mice. J Immunol 108:1470–1472, 1972

    Google Scholar 

  48. Herberman RB, Nunn ME, Holden HT, Staal S, Djeu JY: Augmentation of natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. Int J Cancer 19:555–564, 1977

    PubMed  Google Scholar 

  49. Kiessling R, Klein E, Wagzell H: "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to phenotype. Eur J Immunol 72:2130–2134, 1975

    Google Scholar 

  50. Hasui M, Saikawa Y, Miura M, Takano N, Ueno Y, Yachie A, Miyawaki T, Taniguchi N: Effector and precursor phenotypes of lymphokine-activated killer cells in mice with severe combined immunodeficiency (Scid) and athymic (Nude) mice. Cell Immunol 120:230–239, 1989

    Google Scholar 

  51. Johnson WJ, Balish E: Macrophage function in germ-free, athymic (nu/nu) mice and conventional flora (nu/+) mice. J Reticuloendothel Soc 28:55–66, 1980

    PubMed  Google Scholar 

  52. Roder JC: The beige mutation in the mouse. I. A stem cell predetermined impairment in natural killer cell function. J Immunol 123:2168–2173, 1979

    PubMed  Google Scholar 

  53. Roder JC, Duwe AK: The beige mutation in the mouse selectively impairs natural killer cell function. Nature 278:451–453, 1979

    PubMed  Google Scholar 

  54. Karre K, Klein GO, Kiessling R, Klein G, Roder JC: Low natural in vivo resistance to syngeneic leukemias in natural killer-deficient mice. Nature 284:624–626, 1980

    PubMed  Google Scholar 

  55. Karre K, Klein GO, Kiessling R, Klein G, Roder JC: In vitro NK-activity and in vivo resistance to leukemia: studies of beige, beige/nude and wild type hosts on C57BL background. Int J Cancer 26:789–797, 1980

    PubMed  Google Scholar 

  56. Clark EA, Shultz LD, Pollack SB: Mutations that influence natural killer (NK) cell activity. Immunogenetics 12:601–613, 1981

    PubMed  Google Scholar 

  57. Hioki K, Maruo K, Suzuki S, Kato H, Shimamura K, Saito M, Nomura T: Studies on beige-nude mice with low natural killer cell activity. 1. Introduction of the bg gene into nude mice and the characteristics of beige-nude mice. Lab Animals 21:72–77, 1987

    Google Scholar 

  58. Kincade PW: Defective colony formation by B lymphocytes from CBA/N and C3H/HeJ mice. J Exp Med 145:249–263, 1977

    PubMed  Google Scholar 

  59. Ahmed A, Scher I, Sharrow SO, Smith AH, Paul WE, Sachs DH, Sell KV: B-lymphocyte heterogeneity: development and characterization of an alloantiserum which distinguishes B-lymphocyte differentiation alloantigens. J Exp Med 145:101–110, 1977

    PubMed  Google Scholar 

  60. Perlmutter RM, Nahm M, Stein KE, Slack J, Zitron I, Paul WE, Davie JM: Immunoglobulin subclassspecific immunodeficiency in mice with an X-linked B-lymphocyte defect. J Exp Med 149:993–998, 1979

    PubMed  Google Scholar 

  61. Scher I: The CBA/N mouse strain: experimental model illustrating the influence of the X-chromosome on immunity. Adv Immunol 33:1–71, 1982

    PubMed  Google Scholar 

  62. Gottardis MM, Wagner RJ, Borden EC, Jordan VC: Differential ability of antiestrogens to stimulate breast cancer cell (MCF-7) growth in vivo and in vitro. Cancer Res 49:4765–4769, 1989

    PubMed  Google Scholar 

  63. Azar HA, Hansen CT, Costa J: N:NIH(S)II-nu/nu mice with combined immunodeficiency: a new model for human tumor heterotransplantation. J Natl Cancer Inst 65:421–430, 1980

    PubMed  Google Scholar 

  64. Karagogeos D, Rosenberg N, Wortis HH: Early arrest of B cell development in nude, X-linked immune-deficient mice. Eur J Immunol 16:1125–1130, 1986

    PubMed  Google Scholar 

  65. Bosma GC, Custer RP, Bosma MJ: A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530, 1983

    PubMed  Google Scholar 

  66. Komatsu K, Kubota N, Gallo M, Okumura Y, Lieber MR: The scid factor on human chromosome 8 restores V(D)J recombination in addition to doublestrand break repair. Cancer Res 55:1774–1779, 1995

    PubMed  Google Scholar 

  67. Schuler W, Weiler IJ, Schuler A, Phillips RA, Rosenberg N, Mak TW, Kearney JF, Perry RP, Bosma MJ: Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell 46:963–972, 1986

    PubMed  Google Scholar 

  68. Dorshkind K, Keller GM, Phillips RA, Miller RG, Bosma GC, O'Toole M, Bosma MJ: Functional status of cells from lymphoid and myeloid tissues in mice with severe combined immunodeficiency disease. J Immunol 132:1804–1808, 1984

    PubMed  Google Scholar 

  69. Custer RP, Bosma GC, Bosma MJ: Severe combined immunodeficiency (scid) in the mouse. Pathology, reconstitution, neoplasma. Am J Path 120:464–477, 1985

    PubMed  Google Scholar 

  70. Mueller BM, Reisfeld RA: Potential use of the scid mouse as a host for human tumors. Cancer Metastasis Rev 10:193–200, 1991

    PubMed  Google Scholar 

  71. Malynn BA, Blackwell TK, Fulop GM, Rathbun GA, Furley AJW, Ferrier P, Heinke LB, Phillips RA, Yancopoulos GD, Alt FW: Thescid defect affects the final step of the immunoglobulin VDJ recombinase mechanism. Cell 54:453–460, 1988

    PubMed  Google Scholar 

  72. Quimby FW: Immunodeficient Rodents. A Guide to their Immunobiology, Husbandry, and Use. National Academy Press, Washington DC, 1989

    Google Scholar 

  73. Dorshkind K, Pollack SB, Bosma MJ: Natural killer (NK) cells are present in mice with severe combined immunodeficiency (SCID). J Immunol 134:2911–2913, 1985

    Google Scholar 

  74. Ikeda S, Neyts J, De Clercq E: Host defense mechanisms against murine cytomegalovirus infection induced by poly I:C in severe combined immune deficient (SCID) mice. Proc Soc Exp Biol Med 207:191–196, 1994

    PubMed  Google Scholar 

  75. Bancroft GJ, Kelly JP: Macrophage activation and innate resistance to infection in SCID mice. Immunobiology 191:424–431, 1994

    PubMed  Google Scholar 

  76. Reed ND, Hall-Stoodley L, Shultz L: Mast cell production byscid/scid mice:in vivo andin vitro studies.In: Wu B, Zheng J (eds) Immune-deficient Animals in Experimental Medicine. Karger, Basel, 1989, pp 63–67

    Google Scholar 

  77. Fodstad O: Tumorigenicity and dissemination of human tumors in congenitally immune-deficient mice. J Natl Cancer Inst 83:1419–1420, 1991

    PubMed  Google Scholar 

  78. Kubota N, Yamaguchi H, Watanabe M, Yamamoto T, Takahara T, Takeuchi T, Furukawa T, Kase S, Kodaira S, Ishibiki K: Growth of human tumor xenografts in nude mice and mice with severe combined immunodeficiency (SCID). Surg Today 23:375–377, 1993

    PubMed  Google Scholar 

  79. Oakley CS, Welsch MA, Zhai YF, Chang CC, Gould MN, Welsch CW: Comparative abilities of nude mice and severe combined immune deficient (SCID) mice to accept transplants of induced rat mammary carcinomas: enhanced transplantation efficiency of those rat mammary carcinomas that have elevated expression of neu oncogene. Int J Cancer 53:1002–1007, 1993

    PubMed  Google Scholar 

  80. Xie X, Brünner N, Jensen G, Albrectsen J, Gotthardsen B, Rygaard J: Comparative studies between nude and scid mice on the growth and metastatic behavior of xenografted human tumors. Clin Exp Metastasis 10:201–210, 1992

    PubMed  Google Scholar 

  81. Fodstad O, Hansen CT, Cannon GB, Statham CN, Lichenstein GR, Boyd MR: Lack of correlation between natural killer cell activity and tumor growth control in nude mice with different immune defects. Cancer Res 44:4403–4408, 1984

    PubMed  Google Scholar 

  82. Bosma MJ, Carroll AM: The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol 9:323–350, 1991

    PubMed  Google Scholar 

  83. Clarke R, Dickson RB: Animal models of tumor onset, growth and metastasis. In: Bertino JR (ed) Molecular Biology of Cancer, Vol. 1. Academic Press, San Diego (in press)

  84. Seibert K, Shafie SM, Triche TJ, Whang-Peng JJ, O'Brien SJ, Toney JH, Huff KK, Lippman ME: Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice. Cancer Res 43:2223–2239, 1983

    PubMed  Google Scholar 

  85. Cattanach B, Iddon A, Charlton H, Chiappa S, Fink G: Gonadotropin releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 269:338–340, 1977

    PubMed  Google Scholar 

  86. Masom A, Hayflick J, Zoeller R, Young W, Philips H, Nickolics K, Seeberg PA: A deletion truncating the gonadotropin-releasing gene is responsible for hypogonadism in thehpg mouse. Science 234:1366–1371, 1986

    PubMed  Google Scholar 

  87. Charlton H, Speight A, Halpin D, Bramwell A, Sheward W, Fink G: Prolactin measurements in normal and hypogonadal (hpg) mice: developmental and experimental studies. Endocrinology 113:545–548, 1983

    PubMed  Google Scholar 

  88. Beamer WG, Shultz KL, Tennent B, Shultz LD: Granulosa cell tumorigenesis in genetically hypogonadal-immunodeficient mice grafted with ovaries from tumor-susceptible donors. Cancer Res 53:3741–3746, 1993

    PubMed  Google Scholar 

  89. Screpanti I, Santoni A, Gulino A, Herberman RB, Frati L: Estrogen and antiestrogen modulation of mouse natural killer activity and large granular lymphocytes. Cell Immunol 106:191–202, 1987

    PubMed  Google Scholar 

  90. Seaman WE, Blackman MA, Gindhart TD, Roubinian JR, Loeb JM, Talal N: β-estradiol reduces natural killer cells in mice. J Immunol 121:2193–2198, 1978

    PubMed  Google Scholar 

  91. Hanna N, Schneider M: Enhancement of tumor metastases and suppression of natural killer cell activity by β-estradiol treatment. J Immunol 130:974–980, 1983

    PubMed  Google Scholar 

  92. Seaman WE, Talal N: The effect of 17β-estradiol on natural killing in the mouse.In: Herberman RB (ed) Natural Cell-mediated Immunity Against Tumors. Academic Press, New York, 1980, pp 765–777

    Google Scholar 

  93. Shafie SM, Grantham FH: Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic nude mice. J Natl Cancer Inst 67:51–56, 1981

    PubMed  Google Scholar 

  94. Welsch CW, Swim EL, McManus MJ, White AC, McGrath CM: Estrogen induced growth of human breast cancer cells (MCF-7) in athymic nude mice is enhanced by secretions from transplantable pituitary tumor. Cancer Lett 14:309–316, 1981

    PubMed  Google Scholar 

  95. Clarke R, Brünner N, Katzenellenbogen BS, Thompson EW, Norman MJ, Koppi C, Paik S, Lippman ME, Dickson RB: Progression from hormone dependent to hormone independent growth in MCF-7 human breast cancer cells. Proc Natl Acad Sci USA 86:3649–3653, 1989

    PubMed  Google Scholar 

  96. Clarke R, Brünner N, Thompson EW, Glanz P, Katz D, Dickson RB, Lippman ME: The inter-relationships between ovarian-independent growth, antiestrogen resistance and invasiveness in the malignant progression of human breast cancer. J Endocrinol 122:331–340, 1989

    PubMed  Google Scholar 

  97. Blumenthal RD, Jordan JJ, McLaughlin WH, Bloomer WD: Animal modeling of human breast tumors: limitations in the use of estrogen pellet implants. Breast Cancer Res Treat 11:77–78, 1988

    PubMed  Google Scholar 

  98. Gottardis MM, Jordan VC: Development of tamoxifen-stimulated growth of MCF-7 tumors in athymic mice after long-term antiestrogen administration. Cancer Res 48:5183–5187, 1988

    PubMed  Google Scholar 

  99. Osborne CK, Coronado EB, Robinson JP: Human breast cancer in athymic nude mice: cytostatic effects of long-term antiestrogen therapy. Eur J Cancer Clin Oncol 23:1189–1196, 1987

    PubMed  Google Scholar 

  100. McLeskey SW, Kurebayashi J, Honig SF, Zwiebel JA, Lippman ME, Dickson RB, Kern FG: Fibroblast growth factor 4 transfection of MCF-7 cells produces cell lines that are tumorigenic and metastatic in ovariectomized or tamoxifen-treated athymic nude mice. Cancer Res 53:2168–2177, 1993

    PubMed  Google Scholar 

  101. Friedl A, Jordan VC: Oestradiol stimulates growth of oestrogen receptor-negative MDA-MB-231 breast cancer cells in immunodeficient mice by reducing cell loss. Eur J Cancer 30A:1559–1564, 1994

    PubMed  Google Scholar 

  102. Brünner N, Boulay V, Fojo A, Freter C, Lippman ME, Clarke R: Acquisition of hormone-independent growth in MCF-7 cells is accompanied by increased expression of estrogen-regulated genes but without detectable DNA amplifications. Cancer Res 53:283–290, 1993

    PubMed  Google Scholar 

  103. Brünner N, Svenstrup B, Spang-Thompsen M, Bennet P, Nielsen A, Nielsen JJ: Serum steroid levels in intact and endocrine ablated Balb/c nude mice and their intact litter mates. J Steroid Biochem 25:429–432, 1986

    PubMed  Google Scholar 

  104. Jones DY, Schatzkin A, Green SB, Block G, Brinton LA, Ziegler RG, Hoover R, Taylor PR: Dietary fat and breast cancer in the National Health and Nutrition Examination Survey I epidemiologic follow-up study. J Natl Cancer Inst 79:465–471, 1987

    PubMed  Google Scholar 

  105. Thompson EW, Brünner N, Torri J, Johnson MD, Boulay V, Wright A, Lippman ME, Steeg PS, Clarke R: The invasive and metastatic properties of hormone-independent and hormone-responsive variants of MCF-7 human breast cancer cells. Clin Exp Metastasis 11:15–26, 1993

    PubMed  Google Scholar 

  106. Clarke R, Skaar T, Baumann K, Leonessa K, James MR, Lippman J, Thompson EW, Freter C, Brünner N: Hormonal carcinogenesis in breast cancer: cellular and molecular studies of malignant progression. Breast Cancer Res Treat 31:237–248, 1994

    PubMed  Google Scholar 

  107. Clarke R, Lippman ME: Antiestrogen resistance: mechanisms and reversal.In: Teicher BA (ed) Drug Resistance in Oncology. Marcel Dekker, New York, 1992, pp 501–536

    Google Scholar 

  108. Brünner N, Frandsen TL, Holst-Hansen C, Bei M, Thompson EW, Wakeling AE, Lippman ME, Clarke R: MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant which retains sensitivity to the steroidal antiestrogen ICI 182,780. Cancer Res 53:3229–3232, 1993

    PubMed  Google Scholar 

  109. Bronzert DA, Greene GL, Lippman ME: Selection and characterization of a breast cancer cell line resistant to the antiestrogen LY 117018. Endocrinology 117:1409–1417, 1985

    PubMed  Google Scholar 

  110. Belani CP, Pearl P, Whitley NO, Aisner J: Tamoxifen withdrawal response: report of a case. Arch Intern Med 149:449–450, 1989

    PubMed  Google Scholar 

  111. Canney PA, Griffiths T, Latief TN, Priestman TJ: Clinical significance of tamoxifen withdrawal response. Lancet i:36, 1989

    Google Scholar 

  112. Stein W, Hortobagyi GN, Blumenschein GR: Response of metastatic breast cancer to tamoxifen withdrawal: report of a case. J Surg Oncol 22:45–46, 1983

    PubMed  Google Scholar 

  113. Nawata H, Chong MT, Bronzert D, Lippman ME: Estradiol independent growth of a subline of MCF-7 human breast cancer cells in culture. J Biol Chem 256:6895–6902, 1981

    PubMed  Google Scholar 

  114. Nawata H, Bronzert D, Lippman ME: Isolation and characterization of a tamoxifen resistant cell line derived from MCF-7 human breast cancer cells. J Biol Chem 256:5016–5021, 1981

    PubMed  Google Scholar 

  115. van den Berg HW, Clarke R: Preliminary characterization of a tamoxifen resistant variant of the oestrogen responsive human breast cancer cell line ZR-75-1. Br J Cancer 52:421 1985

    Google Scholar 

  116. van den Berg HW, Lynch M, Martin J, Nelson J, Dickson GR, Crockard AD: Characterization of a tamoxifen-resistant variant of the ZR-75-1 human breast cancer cell line (ZR-75-9a1) and stability of the resistant phenotype. Br J Cancer 59:522–526, 1989

    PubMed  Google Scholar 

  117. Clarke R, Brünner N: Cross resistance and molecular mechanisms in antiestrogen resistance. Endocr Related Cancer 2:59–72, 1995

    Google Scholar 

  118. Johnston SRD, Saccanti-Jotti G, Smith IE, Newby J, Dowsett M: Change in oestrogen receptor expression and function in tamoxifen-resistant breast cancer. Endocr Related Cancer 2:105–110, 1995

    Google Scholar 

  119. Leonessa F, Green D, Licht T, Wright A, Wingate-Legette K, Lippman J, Gottesman MM, Clarke R: MDA435/LCC6 and MDA435/LCC6MDR1: ascites models of human breast cancer. Br J Cancer (in press)

  120. Yee D, Kozelsky TW, Allred DC, Brünner N, Chen S-C, Woo SLC: Adenoviralin vivo gene transfer using a xenograft ascites model of human breast cancer. Breast Cancer Res Treat 32(suppl):77, 1994

    Google Scholar 

  121. Nicholson GL, Gallick GE, Sphon WH, Lembo TM, Tainsky MA: Transfection of activated c-HarasEJ/pSV2neo genes into rat mammary cells: rapid stimulation of clonal diversification of spontaneous metastatic and cell surface properties. Oncogene 7:1127–1135, 1992

    PubMed  Google Scholar 

  122. Vickers PJ, Dickson RB, Shoemaker R, Cowan KH: A multidrug-resistant MCF-7 human breast cancer cell line which exhibits cross-resistance to antiestrogens and hormone independent tumor growth. Mol Endocrinol 2:886–892, 1988

    PubMed  Google Scholar 

  123. Zyad A, Bernard J, Clarke R, Tursz T, Brockhaus M, Chouaib S: Human breast cancer cross-resistance to TNF and adriamycin: relationship to MDR1, MnSOD and TNF gene expression. Cancer Res 54:825–831, 1994

    PubMed  Google Scholar 

  124. Doroshow JH, Akman S, Esworthy S, Chu FF, Burke T: Doxorubicin resistance is conferred by selective enhancement of intracellular glutathione peroxidase or superoxide dismutase content in human MCF-7 breast cancer cells. Free Radic Res Commun 12–13 Pt 2:779–781, 1991

    Google Scholar 

  125. Iwamoto S, Takeda K: Possible cytotoxic mechanisms of TNF in vitro. Hum Cell 3:107–112, 1990

    PubMed  Google Scholar 

  126. Batist G, Tuple A, Sinha BK, Katki AG, Myers CE, Cowan KH: Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem 261:15544–15549, 1986

    PubMed  Google Scholar 

  127. Sinha BK, Mimnaugh EG, Rajagopalan S, Myers CE: Adriamycin activation and oxygen free radical formation in human breast tumor cells: protective role of glutathione peroxidase in adriamycin resistance. Cancer Res 49:3844–3848, 1989

    PubMed  Google Scholar 

  128. Ford JM, Bruggemann EP, Pastan I, Gottesman MM, Hait WN: Cellular and biochemical characterization of thioxanthenes for reversal of multidrug resistance in human and murine cell lines. Cancer Res 50:1748–1756, 1990

    PubMed  Google Scholar 

  129. Clarke R, Currier SJ, Kaplan O, Boulay V, Lovelace E, Pastan I, Gottesman MM, Dickson RB: Role of MDR-1 expression in the hormone responsiveness of MCF-7 human breast cancer cells. Proc Am Assoc Cancer Res 32:366, 1991

    Google Scholar 

  130. Brünner N, Thompson EW, Spang-Thomsen M, Rygaard J, Dano K, Zwiebel JA:lacZ transduced human breast cancer xenografts as an in vivo model for the study of invasion and metastasis. Eur J Cancer 28A:1989–1995, 1992

    PubMed  Google Scholar 

  131. Price JE, Polyzos A, Zhang RD, Daniels LM: Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 50:717–721, 1990

    PubMed  Google Scholar 

  132. Rose DP, Hatala MA, Connolly JM, Rayburn J: Effect of diets containing different levels of linoleic acid on human breast cancer growth and lung metastasis in nude mice. Cancer Res 53:4686–4690, 1993

    PubMed  Google Scholar 

  133. Kurebayashi J, McLeskey SW, Johnson MD, Lippman ME, Dickson RB, Kern FG: Quantitative demonstration of spontaneous metastasis by MCF-7 human breast cancer cells cotransfected with fibroblast growth factor 4 and LacZ. Cancer Res 53:2178–2187, 1993

    PubMed  Google Scholar 

  134. McLeskey SW, Zhang L, Kharbanda S, Kurebayashi J, Lippman ME, Dickson RB, Kern FG: Fibroblast growth factor overexpressing breast carcinoma cells as models of angiogenesis and metastasis. Breast Cancer Res Treat (this issue)

  135. Schackert G, Price JE, Bucana CD, Fidler IJ: Unique patterns of brain metastasis produced by different human carcinomas in athymic nude mice. Int J Cancer 44:892–897, 1989

    PubMed  Google Scholar 

  136. Clarke R, Dickson RB, Lippman ME: Hormonal aspects of breast cancer: growth factors, drugs and stromal interactions. Crit Rev Oncol Hematol 12:1–23, 1992

    PubMed  Google Scholar 

  137. Meyvisch C: Influence of implantation site on formation of metastases. Cancer Metastasis Rev 2:295–306, 1983

    PubMed  Google Scholar 

  138. Volpe JPG, Milas L: Influence of tumor transplantation methods on tumor growth rate and metastatic potential of solitary tumors derived from metastases. Clin Exp Metastasis 8:381–389, 1990

    PubMed  Google Scholar 

  139. Morikawa K, Walker SM, Nakajima M, Pathak S, Jessup JM, Fidler IJ: Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res 48:6863–6871, 1988

    PubMed  Google Scholar 

  140. Kozlowski JM, Fidler IJ, Campbell D, Xu Z-L, Kaighn ME, Hart IR: Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 44:3522–3529, 1984

    PubMed  Google Scholar 

  141. Davidson NE, Gelmann EP, Lippman ME, Dickson RB: Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol Endocrinol 1:216–223, 1987

    PubMed  Google Scholar 

  142. Sainsbury JRC, Nicholson JA, Angus B, Farndon JR, Malcolm AJ, Harris AL: Epidermal growth factor receptor status of histological sub-types of breast cancer. Br J Cancer 58:458–460, 1988

    PubMed  Google Scholar 

  143. Sainsbury JRC, Farndon JR, Nedham GK, Malcolm AJ, Harris AL: Epidermal growth factor receptor status as predictor of early recurrence and death from breast cancer. Lancet i:1398–1402, 1987

    Google Scholar 

  144. Castronovo V, Taraboletti G, Liotta LA, Sobel ME: Modulation of laminin receptor expression by estrogen and progestins in human breast cancer cell lines. J Natl Cancer Inst 81:781–788, 1989

    PubMed  Google Scholar 

  145. Thompson EW, Paik S, Brünner N, Sommers C, Zugmaier G, Clarke R, Shima TB, Torri J, Donahue S, Lippman ME, Martin GR, Dickson RB: Association of increased basement membrane-invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150:534–544, 1992

    PubMed  Google Scholar 

  146. Butler WB, Kirkland WL, Jorgensen TL: Induction of plasminogen activator by estrogen in a human breast cancer cell line (MCF-7). Biochem Biophys Res Commun 90:1328–1334, 1979

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, R. Human breast cancer cell line xenografts as models of breast cancer — The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Res Tr 39, 69–86 (1996). https://doi.org/10.1007/BF01806079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01806079

Key words

Navigation