Skip to main content
Log in

Calcium absorption by fish intestine: The involvement of ATP-and sodium-dependent calcium extrusion mechanisms

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Measurements of unidirectional calcium fluxes in stripped intestinal epithelium of the tilapia,Oreochromis mossambicus, in the presence of ouabain or in the absence of sodium indicated that calcium absorption via the fish intestine is sodium dependent. Active Ca2+ transport mechanisms in the enterocyte plasma membrane were analyzed. The maximum capacity of the ATP-dependent Ca2+ pump (V m :0.63 nmol·min−1 mg−1,K m : 27nm Ca2+) is calculated to be 2.17 nmol·min−1·mg−1, correcting for 29% inside-out oriented vesicles in the membrane preparation. The maximum capacity of the Na+/Ca2+ exchanger with high affinity for Ca2+ (V m :7.2 nmol·min−1·mg−1,K m : 181nm Ca2+) is calculated to be 13.6 nmol·min−1·mg−1, correcting for 53% resealed vesicles and assuming symmetrical behavior of the Na+/Ca2+ exchanger. The high affinity for Ca2+ and the sixfold higher capacity of the exchanger compared to the ATPase suggest strongly that the Na+/Ca2+ exchanger will contribute substantially to Ca2+ extrusion in the fish enterocyte. Further evidence for an important contribution of Na+/Ca2+ exchange to Ca2+ extrusion was obtained from studies in which the simultaneous operation of ATP-and Na+-gradient-driven Ca2+ pumps in inside-out vesicles was evaluated. The fish enterocyte appears to present a model for a Ca2+ transporting cell, in which Na+/Ca2+ exchange activity with high affinity for Ca2+ extrudes Ca2+ from the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albus, H., Groot, J.A., Siegenbeek van Heukelom, J. 1979. Effects of glucose and ouabain on transepithelial electrical resistance and cell volume in stripped and unstripped goldfish intestine.Pfluegers Arch. 383:55–66

    Google Scholar 

  2. Bakker, R., Groot, J.A. 1984. cAMP-mediated effects of ouabain and theophylline on paracellular ion selectivity.Am. J. Physiol. 246:G213-G217

    Google Scholar 

  3. Bayerdörffer, E., Haase, W., Schulz, I. 1985. Na+/Ca2+ countertransport in plasma membrane of rat pancreatic acinar cells.J. Membrane Biol. 87:107–119

    Google Scholar 

  4. Berg, A. 1970. Studies on the metabolism of calcium and strontium in freshwater fish. II. Relative contribution of direct and intestinal absorption in growth conditions.Mem. Ist. Ital. Idrobiol. Dott Marco de Marchi 26:241–255

    Google Scholar 

  5. Cheon, J., Reeves, J.P. 1988. Sodium-calcium exchange in membrane vesicles fromArtemia.Arch. Biochem. Biophys. 267:736–741

    Google Scholar 

  6. Cook, N.J., Kaupp, U.B. 1988. Solubilization, purification, and reconstitution of the sodium-calcium exchanger from bovine retinal rod outer segments.J. Biol. Chem. 263:11382–11388

    Google Scholar 

  7. Corven, E.J.J.M., Roche, C., Van, Os, C.H. 1985. Distribution of Ca2+-ATPase, ATP-dependent Ca2+ transport, calmodulin and vitamin D-dependent Ca2+ binding protein along the villus-crypt axis in rat duodenum.Biochim. Biophys. Acta 820:274–282

    Google Scholar 

  8. Eisenmann, G., Sandblom, J., Neher, E. 1978. Interactions in cation permeation through the gramicidin channel. Cs, Rb, K, Na, Li, Tl, H and effects of anion binding.Biophys. J. 22:307–340

    Google Scholar 

  9. Favus, M.J., Angeid-Backman, E., Breyer, M.D., Coe, F.L. 1983. Effects of trifluoperazine, ouabain and ethacrynic acid on intestinal calcium transport.Am. J. Physiol. 244:G111-G115

    Google Scholar 

  10. Flik, G., Fenwick, J.C., Kolar, Z., Mayer-Gostan, N., Wendelaar Bonga, S.E. 1985a. Whole-body calcium flux rates in cichlid teleost fishOreochromis mossambicus adapted to freshwater.Am. J. Physiol. 249:R432-R437

    Google Scholar 

  11. Flik, G., Fenwick, J.C., Wendelaar Bonga, S.E. 1989. Calcitropic actions of prolactin in freshwater North American eel (Auguilla rostrata LeSueur).Am. J. Physiol. 257:R74-R79

    Google Scholar 

  12. Flik, G., Perry, S.F. 1989. Cortisol stimulates whole body calcium uptake and the branchial calcium pump in freshwater rainbow trout.J. Endocrinol. 120:75–82

    Google Scholar 

  13. Flik, G., Van Rijs, J.H., Wendelaar Bonga, S.E. 1985b. Evidence for high-affinity Ca2+-ATPase activity and ATP-driven Ca2+-transport in membrane preparations of the gill epithelium of the cichlid fishOreochromis mossambicus.J. Exp. Biol. 119:335–347

    Google Scholar 

  14. Flik, G., Wenelaar Bonga, S.E., Fenwick, J.C. 1985c. Active Ca2+ transport in plasma membranes of branchial epithelium of the North-American eel,Anguilla rostrata LeSueur.Biol. Cell. 55:265–272

    Google Scholar 

  15. Garcia, M.L., Slaughter, R.S., King, V.F., Kaczorowski, G.J. 1988. Inhibition of sodium-calcium exchange in cardiac sarcolemmal membrane vesicles. 2. Mechanism of inhibition by bepridil.Biochemistry 27:2410–2415

    Google Scholar 

  16. Ghijsen, W.E.J.M., De Jong, M.D., Van Os, C.H. 1983. Kinetic properties of Na+/Ca2+ exchange in basolateral plasma membranes of rat small intestine.Biochim. Biophys. Acta 730:85–94

    Google Scholar 

  17. Gill, D.L., Chueh, S-H., Whitlow, C.L. 1984. Functional importance of the synaptic plasma membrane calcium pump and sodium-calcium exchanger.J. Biol. Chem. 259:10807–10813

    Google Scholar 

  18. Groot, J.A., Albus, H., Bakker, R. 1981. Analysis of the ouabain induced increase in transepithelial electrical resistance in the goldfish intestinal mucosa.Pfluegers Arch. 392:67–71

    Google Scholar 

  19. Heeswijk, M.P.M. van, Geertsen, J.A.M., Os, C.H. van 1984. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex.J. Membrane Biol. 79:19–31

    Google Scholar 

  20. Hildmann, B., Schmidt, A., Murer, H. 1982. Ca2+-transport across basal-lateral plasma membranes from rat small intestinal epithelial cells.J. Membrane Biol. 65:55–62

    Google Scholar 

  21. Jayakumar, A., Cheng, L., Liang, C.T., Sacktor, B. 1984. Sodium gradient-dependent calcium uptake in renal basolateral membrane vesicles.J. Biol. Chem. 259:10827–10833

    Google Scholar 

  22. Leatherbarrow, R.J. 1987. A non-linear regression analysis program for the IBM PC. Elsevier Biosoft, Amsterdam

    Google Scholar 

  23. Moore, L., Fitzpatrick, D.F., Chen, T.S., Landon, E.J. 1974. Calcium pump activity of the renal plasma membrane and renal microsomes.Biochim. Biophys. Acta. 345:405–418

    Google Scholar 

  24. Murer, H., Hildmann, B. 1981. Transcellular transport of calcium and inorganic phosphate in the small intestinal epithelium.Am. J. Physiol. 240:G409-G416

    Google Scholar 

  25. Ortiz, O.E., Sjodin, R.A. 1984. Sodium- and adenosine-triphosphate-dependent calcium movements in membrane vesicles prepared from dog erythrocytes.J. Physiol. (London) 354:287–301

    Google Scholar 

  26. Perry, S.F., Flik, G. 1988. Characterization of branchial transepithelial calcium fluxes in freshwater trout,Salmo gairdneri.Am. J. Physiol. 254:R491-R498

    Google Scholar 

  27. Philipson, K.D. 1985. Symmetry properties of the Na+−Ca2+ exchange mechanism in cardiac sarcolemmal vesicles.Biochim. Biophys. Acta 821:367–376

    Google Scholar 

  28. Philipson, K.D., Nishimoto, A.Y. 1982. Na+−Ca2+ exchange in inside-out cardiac sarcolemmal vesicles.J. Biol. Chem. 257:5111–5117

    Google Scholar 

  29. Philipson, K.D., Ward, R. 1986. Ca2+ transport capacity of sarcolemmal Na+−Ca2+ exchange. Extrapolation of vesicle data to in vivo conditions.J. Mol. Cell. Cardiol. 18:943–951

    Google Scholar 

  30. Reeves, J. P., Hale, C. C. 1984. The stoichiometry of the cardiac sodium-calcium exchange system.J. Biol. Chem. 259:7733–7739

    Google Scholar 

  31. Reeves, J.P., Sutko, J.L. 1983. Competitive interactions of sodium and calcium with the sodium-calcium exchange system of cardiac sarcolemmal vesicles.J. Biol. Chem. 258:3178–3182

    Google Scholar 

  32. Sandblom, J., Eisenman, G., Neher, E. 1977. Ionic selectivity, saturation and block in gramicidin A channels: I. Theory for the electrical properties of ion selective channels having two pairs of binding sites and multiple conductance states.J. Membrane Biol. 31:383–417

    Google Scholar 

  33. Sillen, L.G., Martell, A.E. 1964. Stability constants of metal ion complexes. The Chemical Society, Special Publication no. 17, London

    Google Scholar 

  34. Slaughter, R.S., Garcia, M.L., Cragoe, E.J., Jr., Reeves, J.P., Kaczorowski, G.J. 1988. Inhibition of sodium-calcium exchange in cardiac sarcolemmal membrane vesicles. I. Mechanism of inhibition by amiloride analogues.Biochemistry 27:2403–2409

    Google Scholar 

  35. Spedding, M. 1985. Activators and inactivators of Ca2+ channels: New perspectives.J. Pharmacol. (Paris) 16:319–343

    Google Scholar 

  36. Van Os, C.H. 1987. Transcellular calcium transport in intestinal and renal epithelial cells.Biochim. Biophys. Acta 906:195–222

    Google Scholar 

  37. Verbost P.M., Flik, G., Lock, R.A.C., Bonga, S.E.W. 1988. Cadmium inhibits plasma membrane calcium transport.J. Membrane Biol. 102:97–104

    Google Scholar 

  38. Verbost, P.M., Flik, G., Pang, P.K.T., Lock, R.A.C., Wendelaar Bonga, S.E. 1989. Cadmium inhibition of the erythrocyte Ca2+ pump. A molecular interpretation.J. Biol. Chem. 264:5613–5615

    Google Scholar 

  39. Younes, A., Fontanarava, C., Schneider, J.M. 1981. Effects of bepridil on the Ca2+ dependent ATPase activity of sarcoplasmic reticulum.Biochem. Pharmacol. 30:2979–2981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flik, G., Schoenmakers, T.J.M., Groot, J.A. et al. Calcium absorption by fish intestine: The involvement of ATP-and sodium-dependent calcium extrusion mechanisms. J. Membrain Biol. 113, 13–22 (1990). https://doi.org/10.1007/BF01869601

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869601

Key Words

Navigation