Skip to main content
Log in

Are there electrochemical aspects of cancer?

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Szent-Gyorgyi first suggested that electron transfer in the bulk of biological materials could be significant. Recent evidence in favor of this concept is cited. Electron transfer processes occur at interfaces involving glass, cellulosic, and biological membranes. Electron transfer controls the rate of redox processes at some interfaces.

Biological cells can be represented in terms of fuel cell concepts. They adhere and divide, depending upon their surface charge. If the charge is too high, division leads to metastasis.

The surface electrical charge in biological cells is affected in two ways, corresponding to the electrochemical description of interfaces as polarizable and nonpolarizable. At polarizable interfaces, concepts of adsorption determine the surface charge for a given condition. In non-polarizable interfaces, electrode-kinetic concepts (i.e., the rates of the reactions) are directly related to the surface charge.

Cancer, it is suggested, occurs when the charge is sufficiently repuslive. Carcinogenic substances adsorb upon the cell substances and affect primarily the electrode kinetics, or charge density. The role of DNA is to create genes which produce substances which act as scavengers for materials which adsorb upon and, thus, affect the electrical state of the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bacquerel, A. C. 1867.Compt. Rend. Hebd. Séances Acad. Sci. 64, 919.

    Google Scholar 

  • Becquerel, A. C. 1877.Compt. Rend. Hebd. Séances Acad. Sci. 85, 169.

    Google Scholar 

  • Bernstein, J. 1902.Arch. Ges. Physiol. 92, 521.

    Article  Google Scholar 

  • Berry, M. N. 1980. FEBS Letters. 117, K106.

  • Bethe, A.; Toropoff, Z. 1964.Z. Phys. Chem. 88, 731.

    Google Scholar 

  • Bockris, J. O'M,; Srinivasan, S. 1967.Nature 215, 197.

    Google Scholar 

  • Bockris, J. O'M. 1969.Nature 224, 775.

    Google Scholar 

  • Bockris, J. O'M.; Reddy, A. K. N. 1977.Modern Electrochemistry, Vol. 2, Plenum Rosetta Edn. Plenum Press, New York.

    Google Scholar 

  • Bockris, J. O'M.; Tunuli, M. S. 1979.J. Electroanal. Chem. 100, 7.

    Article  Google Scholar 

  • Braun, F. 1891aAnn. Phys. Chem. 42, 450–64.

    Google Scholar 

  • Braun, F. 1891b.Ann. Phys. Chem. 44, 473–500.

    Google Scholar 

  • Cairns, J. 1975 (Nov.).Sci, Am. 233, 64.

    Google Scholar 

  • Climenthi, W. 1981. Paper at National Foundation for Cancer Research Conference, Woodshole, MA.

  • Coehn, A. 1898aZ. Phys. Chem. 25, 651.

    Google Scholar 

  • Coehn, A. 1898b.Z. Elektorchem. 4, 501.

    Google Scholar 

  • Coman, D. R. 1944.Cancer Res. 4, 625.

    Google Scholar 

  • Coman, D. R. 1953.Cancer Res. 13, 397.

    Google Scholar 

  • Cope, F. W. 1963.Bull. Math. Biophys. 25, 165 (see also Davson, 1959, for review).

    Google Scholar 

  • Cope, F. W. 1980. InBioelectrochemistry (H. Keyzer and F. Gutmann, eds.). Plenum Press, New York.

    Google Scholar 

  • Croce, C. M.; Koprowski, H. 1978 (Feb.).Sci. Am. 238, 117.

    Google Scholar 

  • Davson, H. 1959. ATextbook of General Physiology, 2nd ed. J. and A. Churchill Ltd., London.

    Google Scholar 

  • Del Duca, M. G., Fuscoe, J. M. 1965 (March).Internat. Sci. Tech. 5(3), 56.

    Google Scholar 

  • Digby, P. S. B. 1965.Proc. Roy. Soc. 161B, 504.

    Google Scholar 

  • Digby, P. S. B. 1972.Symp. Soc. Expt. Biol. 26, 445.

    Google Scholar 

  • Donnan, F. G. 1911.Z. Elektro Chem. 17, S72.

  • Donnan, F. G. 1924.Chem. Rev. 1, 73.

    Article  Google Scholar 

  • Eley, D. D. 1962. InHorizons In Biochemistry (M. Kasha and B. Pullman, eds.). Academic Press, New York, pp. 341–380.

    Google Scholar 

  • Falk, G.; Gerard, R. W. 1954.J. Cell. Comp. Physiol. 43, 393.

    Article  Google Scholar 

  • Fletcher, E. S.; Lilly, R. S.; Harkins, W. D. 1937.J. Gen. Physiol. 20, 671.

    Article  Google Scholar 

  • Fuller, R. C., Ed. 1959.The Photochemical Apparatus. Brookhaven National Laboratory, Upton, New York.

    Google Scholar 

  • Gascoyne, P. R. C.; Pethig, R.; Szent-Györgyi, A. 1981.Proc. Nat. Acad. Sci. U. S. A. 78, 261.

    Google Scholar 

  • Gergely, J. 1961. InElectrical Conductivity In Organic Solids (H. Kallmann and S. Silver, eds.). Wiley, New York, pp. 369–383.

    Google Scholar 

  • Gingell, D.; Fornes, J. A. 1975.Nature 256, 211.

    Article  Google Scholar 

  • Grundfest, H.; Kao, C. Y.; Altamarino, M. 1954.J. Gen. Physiol. 38 245.

    Article  Google Scholar 

  • Gutmann, F.; Lyons, L. E. 1982.Organic Semiconductors, 2nd ed. (revised by F. Gutmann and H. Keyzer), Krieger, Melbourne.

    Google Scholar 

  • Harris, E. J. 1960.Transport and Accumulation In Biological Systems, 2nd ed. Butterworths, London.

    Google Scholar 

  • Hodgkin, A. 1951. Biol, Rev. Cambridge Philos, Soc. 26, 339.

    Google Scholar 

  • Hodgkin, A.; Huxley, A. L. 1952. J. Physiol.117, 500.

    PubMed  Google Scholar 

  • John, T. L. 1971. Proceedings of Workshop in Bioelectrochemistry (ed. A. P. Pilla), National Science Foundation, Washington, D. C., pp. 225–267.

    Google Scholar 

  • Januseviciene, T.; Kaikaris, V. 1965. Chem. Chem. Technol.6, 157.

    Google Scholar 

  • Kallmann, H.; Silver, M. D. Eds. 1961.Electrical Conductivity In Organic Solids. Wiley, New York.

    Google Scholar 

  • Kell, D. B. 1979. Biochim. Biophys. Acta549, 55.

    Google Scholar 

  • Läuger, P.; Lesslauer, W.; Richter, J. 1967. Biochim. Biophys. Acta135, 20.

    Google Scholar 

  • Ling, G. N. 1982.Physiol. Chem. Phys. 14, 47

    Google Scholar 

  • Mandel, L. J. 1969. Electrodic Process in Biological Cells, Ph. D. Dissertation; University of Pennsylvania, Philadelphia.

    Google Scholar 

  • Mandel, L. J. 1972. InModern Aspects of Electrochemistry, Vol. 8. (J. O'M. Bockris and B. E. Conway eds.), Plenum Press, New York.

    Google Scholar 

  • Miller, E. C., Miller, J. A. 1974.Molecular Biology Of Cancer (H. Borsch, ed.). Academic Press, New York.

    Google Scholar 

  • Mitchell, P. 1966. Biol. Rev. Cambridge Philos. Soc.41, 445.

    Google Scholar 

  • Pethig, R. 1981 (Oct.). Paper at National Foundation for Cancer Research Conference, Woodshole, MA.

  • Pethig, R.; Szent-Györgyi, A. 1980. InBioelectrochemistry (H. Keyzer and F. Gutmann, eds.), Plenum Press, New York, p. 227.

    Google Scholar 

  • Pilla, A. A. 1980. InBioelectrochemistry (H. Keyzer and F. Gutmann, eds.). Plenum Press, New York, p. 353.

    Google Scholar 

  • Pohl, H. A.; Sauer, J. R. 1978. J. Biol. Phys.6, 118.

    Google Scholar 

  • Pohl, H. A. 1979. J. Biol. Phys,7, 1.

    Google Scholar 

  • Pohl, H. A. 1980. InBioelectrochemistry (H. Keyzer and F. Gutmann, eds.). Plenum Press, New York, p. 273.

    Google Scholar 

  • Pohl, H. A. 1981a. Collective Phenomena3, 221.

    Google Scholar 

  • Pohl, H. A. 1981b. J. Bioenerg. Biomembr.13, 149.

    Article  Google Scholar 

  • Pope, F.; Kallmann, H. 1961. InElectrical Conductivity In Organic Solids. Wiley, New York, pp. 83–104.

    Google Scholar 

  • Rosenberg, B. 1962. J. Chem. Phys.36, 816.

    Article  Google Scholar 

  • Rosenberg, B.; Pant, H. C. 1970. Chem. Phys. Lipids.4, 203.

    Article  Google Scholar 

  • Rosenberg, B.; Pant, H. C. 1971. Chem. Phys. Lipids,6, 39.

    Article  Google Scholar 

  • Sebba, F. 1972. J. Colloid Interface Sci.40, 479.

    Article  Google Scholar 

  • Shaw, F. H.; Simons, S. E. 1955. Aust. J. Exp. Biol. Med. Sci.33, 153.

    Google Scholar 

  • Shaw, F. H.; Simon, S. E.; Johnstone, B. M. 1956. J. Gen. Physiol.40, 1.

    Article  Google Scholar 

  • Spiro, T. G.; Stigliani, W. M. 1980.Environmental Issues In Chemical Perspective. State Univ. of New York Press, Albany, New York.

    Google Scholar 

  • Szent-Gvörgvi, 1941. Nature148, 157.

    Google Scholar 

  • Szent-Györgyi, A. 1969.Introduction to Submolecular Biology, Academic Press, New York.

    Google Scholar 

  • Szent-Györgyi, A. 1972.The Living State, Academic Press, New York.

    Google Scholar 

  • Szent-Györgyi, A. 1976.Electronic Biology And Cancer, Marcel Dekker, New York.

    Google Scholar 

  • Szent-Györgyi, A. 1978.The Living State and Cancer. Marcel Dekker, New York.

    Google Scholar 

  • Tien, H. T. 1974.Bilayer Lipid Membranes. Marcel Dekker, New York.

    Google Scholar 

  • Tien, H. T.; Karvaly, B.; Shieh, P. K. 1977. J. Colloid Interface Sci.62, 185.

    Article  Google Scholar 

  • Tobias, J. M. 1950. J. Cell Comp. Physiol.26, 1.

    Google Scholar 

  • Wagner, C.; Traud, W. 1938. Z. Electrochem.44, 391.

    Google Scholar 

  • Zierler, K. (Chairman of Symposium). 1980. Fed. Proc.39, 492.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bockris, J.O.M., Habib, M.A. Are there electrochemical aspects of cancer?. J Biol Phys 10, 227–237 (1982). https://doi.org/10.1007/BF01991943

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01991943

Keywords

Navigation