Skip to main content
Log in

The mitochondrial DNA molecule ofDrosophila yakuba: Nucleotide sequence, gene organization, and genetic code

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The sequence of the 16,019 nucleotide-pair mitochondrial DNA (mtDNA) molecule ofDrosophila yakuba is presented. This molecule contains the genes for two rRNAs, 22 tRNAs, six identified proteins [cytochrome b, cytochrome c oxidase subunits I, II, and III (COI-III), and ATPase subunits 6 and 8] and seven presumptive proteins (URF1-6 and URF4L). Replication originates within a region of 1077 nucleotides that is 92.8% A+T and lacks any open reading frame larger than 123 nucleotides. An equivalent to the sequence found in all mammalian mtDNAs that is associated with initiation of second-strand DNA synthesis is not present inD. yakuba mtDNA. Introns are absent fromD. yakuba mitochondrial genes and there are few (0–31) intergenic nucleotides. The genes found inD. yakuba and mammalian mtDNAs are the same, but there are differences in their arrangement and in the relative proportions of the complementary strands of the molecule that serve as templates for transcription. Although theD. yakuba small and large mitochondrial rRNA genes are exceptionally low in G and C and are shorter than any other metazoan rRNA genes reported, they can be folded into secondary structures remarkably similar to the secondary structures proposed for mammalian mitochondrial rRNAs.D. yakuba mitochondrial tRNA genes, like their mammalian counterparts, are more variable in sequence than nonorganelle tRNAs. In mitochrondrial protein genes ATG, ATT, ATA, and in one case (COI) ATAA appear to be used as translation initiation codons. The only termination codon found in these genes is TAA. In theD. yakuba mitochondrial genetic code, AGA, ATA, and TGA specify serine, isoleucine, and tryptophan, respectively. Fifty-nine types of sense codon are used in theD. yakuba mitochondrial protein genes, but 93.8% of all codons end in A or T. Codon-anticodon interactions may include both G-A and C-A pairing in the wobble position. Evidence is summarized that supports the hypothesis that A and T nucleotides are favored at all locations in theD. yakuba mtDNA molecule where these nucleotides are compatible with function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altman PL, Katz DD (eds) (1976) Biological handbooks I: cell biology. Federation of American Societies for Experimental Biology, Bethesda, Maryland, pp 217–219

    Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1982a) Comparison of the human and bovine mitochondrial genomes. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 5–43

    Google Scholar 

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982b) The complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Article  PubMed  Google Scholar 

  • Arcari P, Brownlee GG (1980) The nucleotide sequence of a small (3S) seryl-tRNA (anticodon GCU) from beef heart mitochondria. Nucleic Acids Res 8:5207–5212

    PubMed  Google Scholar 

  • Barrell BG, Bankier AT, Drouin J (1979) A different genetic code in human mitochondria. Nature 282: 189–194

    Article  PubMed  Google Scholar 

  • Barrell BG, Anderson S, Bankier AT de Bruijn MHL, Chen E, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1980) Different pattern of codon recognition by mammalian mitochondrial tRNAs. Proc Natl Acad Sci USA 77:3164–3166

    PubMed  Google Scholar 

  • Battey J, Rubenstein JLR, Clayton DA (1979) Transcription patterns ofDrosophila melanogaster mitochondrial DNA. In: Cummings DJ, Dawid IB, Borst P, Weissman SM, Fox CF (eds) Extrachromosomal DNA. Academic Press, New York, pp 427–442 (ICN-UCLA symposia on molecular and cellular biology, vol XV)

    Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    Article  PubMed  Google Scholar 

  • Bogenhagen DF, Applegate EF, Yoza BK (1984) Identification of a promoter for transcription of the heavy strand of human mtDNA:in vitro transcription and deletion mutagenesis. Cell 36:1105–1113

    Article  PubMed  Google Scholar 

  • Bonitz SG, Berlani R, Coruzzi G, Li M, Macino G, Nobrega FG, Nobrega MP, Thalenfeld BE, Tzagoloff A (1980) Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci USA 77:3167–3170

    PubMed  Google Scholar 

  • Bonner JJ, Berninger M, Pardue ML (1978) Transcription of polytene chromosomes and of the mitochondrial genome inDrosophila melanogaster. Cold Spring Harbor Symp Quant Biol 42:803–814

    PubMed  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences in primates: tempo and mode of evolution. J Mol Evol 18:225–239

    PubMed  Google Scholar 

  • Brutlag DL, Clayton J, Frieland P, Kedes LH (1982) SEQ: a nucleotide sequence analysis and recombination system. Nucleic Acids Res 10:279–304

    PubMed  Google Scholar 

  • Bultmann H, Laird CD (1973) Mitochondrial DNA fromDrosophila melanogaster. Biochim Biophys Acta 299:196–209

    PubMed  Google Scholar 

  • Chan Y-L, Olvera J, Wood IG (1983) The structure of rat 28S ribosomal ribonucleic acid inferred from the sequence of nucleotides in a gene. Nucleic Acids Res 11:7819–7830

    PubMed  Google Scholar 

  • Chang DD, Clayton DA (1984) Precise identification of mitochondrial promoters for transcription of each strand of human mitochondrial DNA. Cell 36:635–643

    Article  PubMed  Google Scholar 

  • Chomyn A, Mariottini P, Gonzalez-Cadavid N, Attardi G, Strong DD, Trovato D, Riley M, Doolittle R (1983) Identification of the polypeptides encoded in the ATPase 6 gene and in the unassigned reading frames 1 and 3 of human mtDNA. Proc Natl Acad Sci USA 80:5535–5539

    PubMed  Google Scholar 

  • Clark CG, Tague BW, Ware VC, Gerbi SA (1984)Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications. Nucleic Acids Res 12:6197–6220

    PubMed  Google Scholar 

  • Clary DO, Wolstenholme DR (1983a) Nucleotide sequence of a segment ofDrosophila mitochondrial DNA that contains the genes for cytochromec oxidase subunits II and III and ATPase subunit 6. Nucleic Acids Res 11:4211–4227

    PubMed  Google Scholar 

  • Clary DO, Wolstenholme DR (1983b) Genes for cytochromec oxidase subunit I, URF2 and three tRNAs inDrosophila mitochondrial DNA. Nucleic Acids Res 11:6859–6872

    PubMed  Google Scholar 

  • Clary DO, Wolstenholme DR (1984a) A cluster of six tRNA genes inDrosophila mitochondrial DNA that includes a gene for an unusual tRNA serAGY . Nucleic Acids Res 12:2367–2379

    PubMed  Google Scholar 

  • Clary DO, Wolstenholme DR (1984b) TheDrosophila mitochondrial genome. In: Maclean N (ed) Oxford surveys on eukaryotic genes, vol 1. Oxford University Press, Oxford, pp 1–35

    Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The ribosomal genes ofDrosophila mitochondrial DNA. Nucleic Acids Res 113:4029–4045

    Google Scholar 

  • Clary DO, Goddard JM, Martin SC, Fauron CMR, Wolstenholme DR (1982)Drosophila mitochondrial DNA: a novel gene order. Nucleic Acids Res 10:6619–6637

    PubMed  Google Scholar 

  • Clary DO, Wahleithner JA, Wolstenholme DR (1983) Transfer RNA genes inDrosophila mitochondrial DNA: related 5′ flanking sequences and comparisons to mammalian mitochondrial tRNA genes. Nucleic Acids Res 11:2411–2425

    PubMed  Google Scholar 

  • Clary DO, Wahleithner JA, Wolstenholme DR (1984) Sequence and arrangement of the genes for cytochrome b, URF1, URF4L, URF4, URF5, URF6 and five tRNAs inDrosophila mitochondrial DNA. Nucleic Acids Res 12:3747–3762

    PubMed  Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28:693–705

    Article  PubMed  Google Scholar 

  • Crews S, Attardi G (1980) The sequences of the small ribosomal RNA gene and the phenylalanine tRNA gene are joined end to end in human mitochondrial DNA. Cell 19:775–784

    PubMed  Google Scholar 

  • de Bruijn MHL (1983)Drosophila melanogaster mitochondrial DNA: a novel organization and genetic code. Nature 304:234–241

    Article  PubMed  Google Scholar 

  • de Bruijn MHL, Klug A (1983) A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire dihydrouridine loop and stem. EMBO J 2:1309–1321

    PubMed  Google Scholar 

  • de Bruijn MHL, Schreier PH, Eperon IC, Barrell BG, Chen EY, Armstrong PW, Wong JFH, Roe BA (1980) A mammalian mitochondrial serine transfer RNA lacking the “dihydrouridine” loop and stem. Nucleic Acids Res 8:5213–5222

    PubMed  Google Scholar 

  • Doolittle RF (1981) Similar amino acid sequences: chance or common ancestry. Science 214:149–159

    PubMed  Google Scholar 

  • Dubin DT, HsuChen CC (1984) Sequence and structure of a methionine transfer RNA from mosquito mitochondria. Nucleic Acids Res 12:4185–4189

    PubMed  Google Scholar 

  • Dubin DT, HsuChen CC, Timko KD, Azzolina TM, Prince DL, Ranzini JL (1982) 3′ termini of mammalian and insect mitochondrial rRNAs. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 89–98

    Google Scholar 

  • Dubin DT, HsuChen CC, Cleaves GR, Timko KD (1984) Sequence and structure of a serine transfer RNA with GCU anticodon from mosquito mitochondria. J Mol Biol 176:251–260

    Article  PubMed  Google Scholar 

  • Fauron CMR, Wolstenholme DR (1976) Structural heterogeneity of mitochondrial DNA molecules within the genusDrosophila. Proc Natl Acad Sci USA 73:3623–3627

    PubMed  Google Scholar 

  • Fauron CMR, Wolstenholme DR (1980) Extensive diversity amongDrosophila species with respect to nucleotide sequences within the adenine + thymine-rich region of mitochondrial DNA molecules. Nucleic Acids Res 8:2439–2452

    PubMed  Google Scholar 

  • Fox TD (1979) Five TGA “stop” codons occur within th translated sequence of the yeast mitochondrial gene for cytochromec oxidase subunit II. Proc Natl Acad Sci USA 76:6534–6538

    PubMed  Google Scholar 

  • Glotz C, Zweib C, Brimacombe R (1981) Secondary structure of the large subunit ribosomal RNA fromEscherichia coli, Zea mays chloroplast, and human and mouse mitochondrial ribosomes. Nucleic Acids Res 9:3287–3306

    PubMed  Google Scholar 

  • Goddard JM, Wolstenholme DR (1978) Origin and direction of replication in mitochondrial DNA molecules fromDrosophila melanogaster. Proc Natl Acad Sci USA 75:3886–3890

    PubMed  Google Scholar 

  • Goddard JM, Wolstenholme DR (1980) Origin and direction of replication in mitochondrial DNA molecules from the genusDrosophila. Nucleic Acids Res 8:741–757

    PubMed  Google Scholar 

  • Gray MW, Sankoff D, Cedergren RJ (1984) On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res 12:5837–5852

    PubMed  Google Scholar 

  • Gronenborn B, Messing J (1978) Methylation of single stranded DNAin vitro introduces new restriction endonuclease cleavage sites. Nature 272:375–377

    Article  PubMed  Google Scholar 

  • Grosskopf R, Feldmann H (1981) Analysis of a DNA segment from rat liver mitochondria containing the genes for cytochrome oxidase subunits I, II and III, ATPase6 and several tRNA genes. Curr Genet 4:151–158

    Article  Google Scholar 

  • Heckman JE, Sarnoff J, Alzner-De Weerd B, Yin S, RajBhandary UL (1980) Novel features in the genetic code and codon reading patterns inNeurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. Proc Natl Acad Sci USA 77:3159–3163

    PubMed  Google Scholar 

  • Hong GF (1982) A systematic DNA sequencing strategy. J Mol Biol 158:539–549

    PubMed  Google Scholar 

  • HsuChen CC, Cleaves GR, Dubin DT (1983a) Sequences of three transfer RNAs from mosquito mitochondria. Plasmid 10:55–65

    Article  PubMed  Google Scholar 

  • HsuChen CC, Cleaves GR, Dubin DT (1983b) A major lysine tRNA with a CUU anticodon in insect mitochondria. Nucleic Acids Res 11:8659–8662

    PubMed  Google Scholar 

  • HsuChen CC, Kotin RM, Dubin DT (1984) Sequence of the coding and flanking regions of the large ribosomal subunit RNA gene of mosquito mitochondria. Nucleic Acids Res 12:7771–7785

    PubMed  Google Scholar 

  • Hudspeth MES, Ainley WM, Shumard DS, Butow RA, Grossman LI (1982) Location and structure of the varl gene of yeast mitochondrial DNA: nucleotide sequence of the 40.0 allele. Cell 30:617–626

    Article  PubMed  Google Scholar 

  • Jue RA, Woodbury NW, Doolittle RF (1980) Sequence homologies amongE. coli ribosomal proteins: evidence for evolutionarily related groupings and internal duplications. J Mol Evol 15:129–148

    Article  PubMed  Google Scholar 

  • Kasamatsu H, Vinograd J (1974) Replication of circular DNA in eukaryotic cells. Annu Rev Biochem 43:695–719

    Article  PubMed  Google Scholar 

  • Kim SH (1979) Crystal structure of yeast tRNAphe and general structural features of other tRNAs. In: Schimmel PR, Soll D, Abelson JN (eds) Transfer RNA: structure, properties and recognition. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 83–100

    Google Scholar 

  • Klukas CK, Dawid IB (1976) Characterization and mapping of mitochondrial ribsomal RNA and mitochondrial DNA inDrosophila melanogaster. Cell 9:615–625

    Article  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:333–348

    Article  Google Scholar 

  • Lagerkvist U (1981) Unorthodox codon reading and the evolution of the genetic code. Cell 23:305–306

    Article  PubMed  Google Scholar 

  • Macreadie IG, Novitski CE, Maxwell RJ, John LL, Goi B-G, McMullan L, Lukins HB, Linnane AW, Nagley P (1983) Biogenesis of mitochondria: the mitochondrial gene (aapl) coding for mitochondrial ATPase subunit 8 inSaccharomyces cerevisiae. Nucleic Acids Res 11:4435–4451

    PubMed  Google Scholar 

  • Mariottini P, Chomyn A, Attardi G (1983) Antibodies against synthetic peptides reveal that the unidentified reading frame A6L, overlapping the ATPase 6 gene, is expressed in human mitochondria. Cell 32:1269–1277

    Article  PubMed  Google Scholar 

  • Merten SH, Pardue ML (1981) Mitochondrial DNA inDrosophila. An analysis of genome organization and transcription inDrosophila melanogaster andDrosophila virilis. J Mol Biol 153:1–23

    PubMed  Google Scholar 

  • Messing J, Vieira J (1982) A new pair of M13 vectors for selecting either DNA strand of double digest restriction fragments. Gene 19:269–276

    Article  PubMed  Google Scholar 

  • Michael NL, Rothbard JB, Shiurba RA, Linke HK, Schoolnik GK, Clayton DA (1984) All eight unassigned reading frames of mouse mitochondrial DNA are expressed. EMBO J 3:3165–3175

    PubMed  Google Scholar 

  • Montoya J, Ojala D, Attardi G (1981) Distictive features of the 5′ terminal sequences of the human mitochondrial mRNAs. Nature 290:465–470

    Article  PubMed  Google Scholar 

  • Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G (1982) Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci USA 79:7195–7199

    PubMed  Google Scholar 

  • Montoya J, Gaines GL, Attardi G (1983) The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell 34:151–159

    Article  PubMed  Google Scholar 

  • Nass MMK (1980) Pulse-label analysis and mapping of the two terminal regions of asynchronous complementary strand replication of mitochondrial DNA in transformed hamster cells. J Mol Biol 140:257–281

    Article  PubMed  Google Scholar 

  • Noller HF (1984) Structure of ribosomal RNA. Annu Rev Biochem 53:119–162

    Article  PubMed  Google Scholar 

  • Ohi S, Ramirez JL, Upholt WB, Dawid IB (1978) Mapping of mitochondrial 4S RNA genes inXenopus laevis by electron microscopy. J Mol Biol 121:299–310

    Article  PubMed  Google Scholar 

  • Ojala D, Merkel C, Gelfand R, Attardi G (1980) The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA. Cell 22:393–403

    Article  PubMed  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  PubMed  Google Scholar 

  • Peacock WJ, Brutlag D, Goldring E, Appels R, Hinton CW, Lindsley DL (1974) The organization of highly repeated DNA sequences inDrosophila melanogaster chromosomes. Cold Spring Harbor Symp Quant Biol 38:405–416

    PubMed  Google Scholar 

  • Pepe G, Holtrop M, Gadaleta G, Kroon AM, Cantatore P, Gallerani R, De Benedetto C, Quagliariello E, Sbisa E, Saccone C (1983) Non random patterns of nucleotide substitutions and codon strategy in the mammalian mitochondrial genes coding for identified and unidentified reading frames. Biochem Int 6:553–563

    PubMed  Google Scholar 

  • Polan ML, Friedman S, Gall JG, Gehring W (1973) Isolation and characterization of mitochondrial DNA fromDrosophila melanogaster. J Cell Biol 56:580–589

    Article  PubMed  Google Scholar 

  • Rajput B, Duncan L, DeMille D, Miller RC Jr, Spiegelman G (1982) Transcription of cloned transfer RNA genes fromDrosophila melanogaster in a homologous cell free extract. Nucleic Acids Res 10:6541–6550

    PubMed  Google Scholar 

  • Ramirez JL, Dawid IB (1978) Mapping of mitochondrial DNA inXenopus laevis andX. borealis: the positions of ribosomal genes and D-loops. J Mol Biol 119:133–146

    Article  PubMed  Google Scholar 

  • Rastl E, Dawid IB (1978) Expression of the mitochondrial genome inXenopus laevis: a map of transcripts. Cell 18:501–510

    Article  Google Scholar 

  • Robberson DL, Kasamatsu H, Vinograd J (1972) Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. Proc Natl Acad Sci USA 69:737–741

    PubMed  Google Scholar 

  • Roe BA, Wong JFH, Chen EY, Armstrong PW, Stankiewicz A, Ma DP, McDonough J (1982) Mammalian mitochondrial tRNAs: A modified nucleotide 3′ to the anticodon may modulate their codon response. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 45–49

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Spradling A, Pardue ML, Penman S (1977) Messenger RNA in heat-shockedDrosophila cells. J Mol Biol 109:559–587

    PubMed  Google Scholar 

  • Sprinzl M, Gauss DH (1984a) Compilation of tRNA sequences. Nucleic Acids Res 12:r1-r57

    PubMed  Google Scholar 

  • Sprinzl M, Gauss DH (1984b) Compilation of sequences of tRNA genes. Nucleic Acids Res 12:r59-r131

    PubMed  Google Scholar 

  • Staden R (1980) A computer program to search for tRNA genes. Nucleic Acids Res 8:817–825

    PubMed  Google Scholar 

  • Staden R (1982) Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Res 10:4731–4751

    PubMed  Google Scholar 

  • Stormo GD, Schneider TD, Gold LM (1982) Characterization of translation initiation sites inE. coli. Nucleic Acids Res 10:2971–2996

    PubMed  Google Scholar 

  • Taira M, Yoshida E, Kobayashi M, Yaginuma K, Koike K (1983) Tumor-associated mutations of rat mitochondrial transfer RNA genes. Nucleic Acids Res 11:1635–1643

    PubMed  Google Scholar 

  • Van Etten RA, Walberg MW, Clayton DA (1980) Precise localization and nucleotide sequence of the two mouse mitochondrial rRNA genes and three immediately adjacent novel tRNA genes. Cell 22:157–170

    Article  PubMed  Google Scholar 

  • Van Etten RA, Michael NL, Bibb MJ, Brennicke A, Clayton DA (1982) Expression of the mouse mitochondrial DNA genome. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 73–88

    Google Scholar 

  • Ware VC, Tague BW, Clark CG, Gourse RL, Brand RC, Gerbi SA (1983) Sequence analysis of 28S ribosomal DNA from the amphibianXenopus laevis. Nucleic Acids Res 11:7795–7817

    PubMed  Google Scholar 

  • Woese CR, Gutnell R, Gupta R, Noller HF (1983) Detailed analysis of the higher order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 47:621–669

    PubMed  Google Scholar 

  • Wolstenholme DR, Clary DO (1985) Sequence evolution ofDrosophila mitochondrial DNA. Genetics 109:725–744

    PubMed  Google Scholar 

  • Wolstenholme DR, Koike K, Cochran-Fouts P (1974) Replication of mitochondrial DNA: replicative forms of molecules from rat tissues and evidence for discontinuous replication. Cold Spring Harbor Symp Quant Biol 38:267–280

    PubMed  Google Scholar 

  • Wong JFH, Ma DP, Wilson RK, Roe BA (1983) DNA sequence of theXenopus laevis mitochondrial heavy and light strand replication origins and flanking tRNA genes. Nucleic Acids Res 11:4977–4995

    PubMed  Google Scholar 

  • Zweib C, Glotz C, Brimacombe R (1981) Secondary structure comparison between small subunit ribosomal RNA molecules from six different species. Nucleic Acids Res 9:3621–3640

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clary, D.O., Wolstenholme, D.R. The mitochondrial DNA molecule ofDrosophila yakuba: Nucleotide sequence, gene organization, and genetic code. J Mol Evol 22, 252–271 (1985). https://doi.org/10.1007/BF02099755

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099755

Key words

Navigation