Skip to main content
Log in

An evolutionary tree for invertebrate globin sequences

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

A phylogenetic tree was constructed from 245 globin amino acid sequences. Of the six plant globins, five represented the Leguminosae and one the Ulmaceae. Among the invertebrate sequences, 7 represented the phylum Annelida, 13 represented Insecta and Crustacea of the phylum Arthropoda, and 6 represented the phylum Mollusca. Of the vertebrate globins, 4 represented the Agnatha and 209 represented the Gnathostomata. A common alignment was achieved for the 245 sequences using the parsimony principle, and a matrix of minimum mutational distances was constructed. The most parsimonious phylogenetic tree, i.e., the one having the lowest number of nucleotide substitutions that cause amino acid replacements, was obtained employing clustering and branch-swapping algorithms. Based on the available fossil record, the earliest split in the ancestral metazoan lineage was placed at 680 million years before present (Myr BP), the origin of vertebrates was placed at 510 Myr BP, and the separation of the Chondrichthyes and the Osteichthyes was placed at 425 Myr BP. Local “molecular clock” calculations were used to date the branch points on the descending branches of the various lineages within the plant and invertebrate portions of the tree. The tree divided the 245 sequences into five distinct clades that corresponded exactly to the five groups plants, annelids, arthropods, molluscs, and vertebrates. Furthermore, the maximum parsimony tree, in contrast to the unweighted pair group and distance Wagner trees, was consistent with the available fossil record and supported the hypotheses that the primitive hemoglobin of metazoans was monomeric and that the multisubunit extracellular hemoglobins found among the Annelida and the Arthropoda represent independently derived states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baba ML, Darga LL, Goodman M, Czelusniak J (1981) Evolution of cytochrome c investigated by the maximum parsimony method. J Mol Evol 17:197–203

    Google Scholar 

  • Benesch R, Benesch RE (1974) Homos and heteros among the hemos. Science 185:905–908

    Google Scholar 

  • Bolognesi M, Coda A, Gatti G, Ascenzi P, Brunori M (1985) Crystal structure of ferricAplysia limacina myoglobin at 2.0Å resolution. J Mol Biol 183:113–115

    Google Scholar 

  • Bonner AG, Laursen RA (1977) The amino acid sequence of a dimeric myoglobin from the gastropod molluscBusycon canaliculatum. FEBS Lett 73:201–203

    Google Scholar 

  • Brown GG, Lee JS, Brisson N, Verma DPS (1984) The evolution of a plant globin gene family. J Mol Evol 21:19–32.

    Google Scholar 

  • Buse G, Stettens GJ, Braunitzer G, Steer W (1979) Hamoglobine. XXV Hamoglobin (Erythrocruorin) CTTIII ausChironomus thummi thummi: Primarstruktur und Beziehung zu anderer Hemproteine. Hoppe Seyler's Z Physiol Chem 360:89–97

    Google Scholar 

  • Cloud P, Glassner MF (1982) The Ediacaran period and system: Metazoa inherit the earth. Science 217:783–788

    Google Scholar 

  • Como PF, Thompson EOP (1980) Amino acid sequence of the alpha chain of the tetrameric haemoglobin of the bivalve molluscAnadara trapezia. Aust J Biol Sci 33:653–664

    Google Scholar 

  • Cox LR (1960) Gastropoda: general characteristics. In: Moore RC (ed) Treatise on invertebrate paleontology, part I. University of Kansas Press, Lawrence, pp 85–169

    Google Scholar 

  • Daniel E (1983) Subunit structure of arthropod erythrocruorin. Life Chem Rep, Suppl 1, pp 157–166

    Google Scholar 

  • Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668

    Google Scholar 

  • Feng DF, Johnson MS, Doolittle RF (1985) Aligning amino acid sequences: comparison of commonly used methods. J Mol Evol 21:112–125

    Google Scholar 

  • Fisher WK, Gilbert AT, Thompson EOP (1984) Amino acid sequence of the globin IIB chain of the dimeric haemoglobin of the bivalve molluscAnadara trapezia. Austr J Biol Sci 37:191–203

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    Google Scholar 

  • Furuta H, Kajita A (1983) Dimeric hemoglobin of the bivalve molluscAnadara broughtonii: complete amino acid sequence of the globin chain. Biochemistry 22:917–922

    Google Scholar 

  • Garey JR, Riggs AF (1986) The hemoglobin ofUrechis capo. J Biol Chem 261:16446–16450

    Google Scholar 

  • Garlick RL, Riggs A (1982) The amino acid sequence of a major polypeptide chain of earthworm hemoglobin. J. Biol Chem 257:9005–9015

    Google Scholar 

  • Gilbert AT, Thompson EOF (1985) Amino acid sequence of the beta chain of the tetrameric hemoglobin of the bivalve molluscAnadara trapezia. Austr J Biol Sci 38:221–236

    Google Scholar 

  • Goodman M (1981) Decoding the pattern of protein evolution. Prog Biophys Mol Biol 37:105–164

    Google Scholar 

  • Goodman M, Moore GW, Barnabas J (1974) The phylogeny of human globin genes investigated by the maximum parsimony method. J Mol Evol 3:1–48

    Google Scholar 

  • Goodman M, Moore GW, Matsuda G (1975) Darwinian evolution in the genealogy of hemoglobin. Nature 253:603–608

    Google Scholar 

  • Goodman M, Czelusniak J, Moore GW, Romero-Herrera A, Matsuda G (1979) Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst Zool 28:132–163

    Google Scholar 

  • Goodman M, Braunitzer G, Kleinschmidt I, Aschauer H (1983) The analysis of a protein polymorphism. Evolution of monomeric and dimeric hemoglobins ofChironomus thummi thummi. Hoppe Seyler's Z Physiol Chem 364:205–217

    Google Scholar 

  • Goodman M, Koop BF, Czelusniak J, Wiess ML, Slightom JL (1984) The η-globin gene: its long evolutionary history in the β-globin gene family of mammals. J Mol Biol 180:803–823

    Google Scholar 

  • Goodman M, Miyamoto MM, Czelusniak J (1987a) Pattern and process in vertebrate phylogeny revealed by coevolution of molecules and morphologies. In: Patterson C (ed) Molecules and morphology in evolution: conflict or compromise? Cambridge University Press, pp 141–176

  • Goodman M, Czelusniak J, Koop BF, Tagle DA, Slightom JL (1987b) Globins: a case study in molecular phylogeny. Cold Spring Harbor Symp Quant Biol 52 (in press)

  • Gotoh T, Kamada Y (1980) Subunit structure of erythrocruorin from the polychaeteTylorrhynchus heterochaetus. Biochem J (Tokyo) 87:557–562

    Google Scholar 

  • Gotoh T, Shishikura F, Snow JS, Ereifej KI, Vinogradov SN, Walz DA (1987) Two globin strains in the giant annelid extracellular haemoglobins. Biochem J 241:441–445

    Google Scholar 

  • Harland WB, Cox AV, Llewellyn PG, Pickton CAG, Smith AG, Walters R (1982) A geologic time scale. Cambridge University Press, pp 7–55

  • Imamura T, Baldwin TO, Riggs A (1972) The amino acid sequence of the monomer hemoglobin component from the bloodwormGlycera dibranchiata. J Biol Chem 247:2785–2797

    Google Scholar 

  • Jukes TH (1963) Some recent advances in studies of the transcription of the genetic message. Adv Biol Med Phys 9:1–41

    Google Scholar 

  • Landsmann J, Dennis ES, Higgins TJV, Appleby CA, Kortt AA, Peacock WJ (1986) Common evolutionary origin of legume and non-legume plant haemoglobins. Nature 324:166–168

    Google Scholar 

  • Løvtrup S (1977) The phylogeny of Vertebrata. Wiley, London

    Google Scholar 

  • Mangum M (1976) Primitive respiratory adaptations. In: Newell PC (ed) Adaptation to environment: physiology of marine animals. Butterworth's, London, pp 191–278

    Google Scholar 

  • Mettam C (1985) Functional constraints in the evolution of the Annelida. In: Morris SC, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. Clarendon Press, Oxford, pp 297–309

    Google Scholar 

  • Moens L (1982) The extracellular hemoglobin ofArtemia salina. A biochemical and ontogenetical study. Acad Anal 44:1–21

    Google Scholar 

  • Moens L, Van Hauwaeert ML, Geelen D, Verproten G, Van Beeumen J (1986) The amino acid sequence of a structural unit isolated from the high molecular weight globin chains ofArtemia sp. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin, pp 81–84

    Google Scholar 

  • Moore GW (1977) Proof of the populous path algorithm for missing mutations in parsimony trees. J Theor Biol 66:95–101

    Google Scholar 

  • Moore GW, Goodman M (1977) Alignment statistic for identifying related protein sequences. J Mol Evol 9:121–130

    Google Scholar 

  • Morris SC (1985) Non-skeletalized lower invertebrate fossils: a review. In: Morris SC, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. Clarendon Press, Oxford, pp 343–359

    Google Scholar 

  • Needleman SB, Wunsch CB (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 98:443–453

    Google Scholar 

  • Padlan EA, Love WE (1974) Three-dimensional structure of the hemoglobin from the polychaete annelidGlycera dibranchiata at 2.5Å resolution. J Biol Chem 249:309–338

    Google Scholar 

  • Perutz M (1979) Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu Rev Biochem 48:327–386

    Google Scholar 

  • Petruzelli R, Goffredo BM, Barra D, Bossa F, Boffi A, Verzili D, Ascoli F, Chiancone E (1985) Amino acid sequence of the cooperative homodimeric hemoglobin from the molluscScapharca inaequivalvis and topology of intersubunit contacts. FEBS Lett 184:328–332

    Google Scholar 

  • Pojeta J, Runnegar B, Kriz J (1973)Fordilla troyensis Barrande: the oldest known pelecypod. Science 180:866–868

    Google Scholar 

  • Polhill RM (1981) Papilionideae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, part I. Royal Botanic Gardens, Kew, pp 191–208

    Google Scholar 

  • Romer AS (1966) Vertebrate paleontology, ed 3. University of Chicago Press, Chicago

    Google Scholar 

  • Royer WE, Love WE, Fenderson FF (1985) The cooperative dimeric and tetrameric chain hemoglobins are novel assemblages of myoglobin folds. Nature 316:277–280

    Google Scholar 

  • Schram FR (1982) The fossil record and evolution of Crustacea. In: Abele LG (ed) The biology of the Crustacea, vol 1, pp 94–147

  • Shishikura F, Snow JS, Gotoh T, Vinogradov, SN, Walz DA (1987) The amino acid sequence of the monomer subunit of the extracellular hemoglobin ofLumbricus terrestris. J Biol Chem 262:3123–3131

    Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438

    Google Scholar 

  • Specht T, Ulbrich N, Erdmann VA (1986) Nucleotide sequence of the 5S rRNA from the Annelida speciesEnchytraeus albidus. Nucleic Acids Res 14:4372

    Google Scholar 

  • Steigemann W, Weber E (1979) Structure of erythrocruorin in different ligand states refined at 1.4Å resolution. J Mol Biol 127:309–338

    Google Scholar 

  • Suzuki T (1986) Amino acid sequence of myoglobin from the molluscDolabella auricularia. J Biol Chem 261:3692–3699

    Google Scholar 

  • Suzuki T, Gotoh T (1986) The complete amino acid sequence of giant multisubunit hemoglobin from the polychaeteTylorrhynchus heterochaetus. J Biol Chem 261:9257–9267

    Google Scholar 

  • Suzuki T, Takagi T, Shikama K (1981) Amino acid sequence of myoglobin fromAplysia kurodai. Biochim Biophys Acta 669:79–83

    Google Scholar 

  • Suzuki T, Takagi T, Gotoh T (1982) Amino acid sequence of the smallest polypeptide chain containing heme of extracellular hemoglobin from the polychaeteTylorrhynchus heterochaetus. Biochim Biophys Acta 708:253–258

    Google Scholar 

  • Suzuki T, Furukohri T, Gotoh T (1985a) Subunit structure of extracellular hemoglobin from the polychaeteTylorrhynchus heterochaetus and amino acid sequence of the constituent polypeptide chain (IIC). J Biol Chem 260:3145–3154

    Google Scholar 

  • Suzuki T, Yasunaga H, Furukohri T, Nakamura K, Gotoh T (1985b) Amino acid sequence of polypeptide chain IIB of extracellular hemoglobin from the polychaeteTylorrhynchus heterochaetus. J Biol Chem 260:11481–11487

    Google Scholar 

  • Takagi T, Tobita M, Shikama K (1983) Amino acid sequence of dimeric myoglobin fromCerithidea rhizophorarum. Biochim Biophys Acta 745:32–36

    Google Scholar 

  • Takagi T, Iida S, Matsuoka A, Shikama K (1984)Aplysia myoglobins with an unusual amino acid sequence. J Mol Biol 180: 1179–1184

    Google Scholar 

  • Tasch P (1980) Paleobiology of the invertebrates. Wiley, New York, pp 441–470

    Google Scholar 

  • Tentori L, Vivaldi G, Carta S, Marinucci M, Massa A, Antonini E, Brunori M (1973) The amino acid sequence of myoglobin from the molluscAplysia limacina. Int J Pept Protein Res 5:182–200

    Google Scholar 

  • Terwilliger RC (1980) Structure of invertebrate hemoglobins. Am Zool 20:53–67

    Google Scholar 

  • Terwilliger RC, Terwilliger, NB (1985) Molluscan hemoglobins. Comp Biochem Physiol B Comp Biochem 81B:255–261

    Google Scholar 

  • Vainshtein BK (1981) The structure of leghemoglobin. In: Dodson G, Glusker CJP, Sayre D (eds) Structural studies of molecular biological interest. Oxford University Press, pp 39–43

  • Vinogradov SN (1985) The structure of invertebrate extracellular hemoglobins (erythrocruorins and chlorocruorins). Comp Biochem Physiol B Comp Biochem 82B:1–15

    Google Scholar 

  • Vinogradov SN, Shlom JM, Kapp OH, Frossard P (1980) The dissociation of annelid extracellular hemoglobins and their quaternary structure. Comp Biochem Physiol B Comp Biochem 67B:1–16

    Google Scholar 

  • Vinogradov SN, Kapp OH, Ohtsuki M (1982) The extracellular haemoglobins and chlorocruorins of annelids In: Harris J (ed) Electron microscopy of proteins, vol 3. Academic Press, London, pp 135–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, M., Pedwaydon, J., Czelusniak, J. et al. An evolutionary tree for invertebrate globin sequences. J Mol Evol 27, 236–249 (1988). https://doi.org/10.1007/BF02100080

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100080

Key words

Navigation