Skip to main content
Log in

Mitochondrial DNA evolution in themelanogaster species subgroup ofDrosophila

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Detailed restriction maps (40 cleavage sites on average) of mitochondrial DNAs (mtDNAs) from the eight species of themelanogaster species subgroup ofDrosophila were established. Comparison of the cleavage sites allowed us to build a phylogenetic tree based on the matrix of nucleotide distances and to select the most parsimonious network. The two methods led to similar results, which were compared with those in the literature obtained from nuclear characters. The three chromosomally homosequential speciesD. simulans, D. mauritiana, andD. sechellia are mitochondrially very related, but exhibit complex phylogenetic relationships.D. melanogaster is their closest relative, and the four species form a monophyletic group (theD. melanogaster complex), which is confirmed by the shared unusual length of their mt genomes (18–19 kb). The other four species of the subgroup (D. yakuba, D. teissieri, D. erecta, andD. orena) are characterized by a much shorter mt genome (16–16.5 kb). The monophyletic character of theD. yakuba complex, however, is questionable. Two species of this complex,D. yakuba andD. teissieri, are mitochondrially indistinguishable (at the level of our investigation) in spite of their noticeable allozymic and chromosomal divergence. Finally, mtDNA distances were compared with the nuclear-DNA distances thus far established. These sequences seem to evolve at rather similar rates, the mtDNA rate being barely double that of nuclear DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    PubMed  Google Scholar 

  • Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103:287–312

    PubMed  Google Scholar 

  • Ashburner M, Bodmer M, Lemeunier F (1984) On the evolutionary relationships ofDrosophila melanogaster. Dev Genet 4:295–312

    Google Scholar 

  • Baba-Aïssa F, Solignac M (1984) La plupart des populations deDrosophila simulans ont probablement pour ancêtre une femelle unique dans un passé récent. C R Seances Acad Sci 299:289–292

    Google Scholar 

  • Beverley SM, Wilson AC (1982) Molecular evolution inDrosophila and higher Diptera. I. Micro-complement fixation studies of larval hemolymph protein. J Mol Evol 18:251–264

    PubMed  Google Scholar 

  • Beverley SM, Wilson AC (1984) Molecular evolution inDrosophila and higher Diptera. II. A time scale for fly evolution. J Mol Evol 21:1–13

    PubMed  Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    PubMed  Google Scholar 

  • Bodmer M, Ashburner M (1984) Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species ofDrosophila. Nature 309:425–430

    PubMed  Google Scholar 

  • Brown GG, Simpson MV (1981) Intra- and interspecific variation of the mitochondrial genome inRattus norvegicus andRattus rattus: restriction enzyme analysis of variant mitochondrial DNA molecules and their evolutionary relationships. Genetics 97:125–143

    PubMed  Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    PubMed  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    PubMed  Google Scholar 

  • Cann RL, Wilson AC (1983) Length mutations in human mitochondrial DNA. Genetics 104:699–711

    PubMed  Google Scholar 

  • Cann RL, Brown WM, Wilson AC (1984) Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106:479–499

    PubMed  Google Scholar 

  • Chomyn A, Mariottini P, Cleeter MWJ, Ragan CI, Matsuno-Yagi A, Hatefi Y, Doolittle RF, Attardi G (1985a) Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314:592–597

    PubMed  Google Scholar 

  • Chomyn A, Mariottini P, Cleeter MWJ, Ragan CI, Doolittle RF, Matsuno-Yagi A, Hatefi Y, Attardi G (1985b) Functional assignment of the products of the unidentified reading frames of human mitochondrial DNA (abstract). In: International symposium on achievements and perspectives in mitochondrial research, Bari, p 223

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule ofDrosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271

    PubMed  Google Scholar 

  • Cohn VH, Thompson MA, Moore GP (1984) Nucleotide sequence comparison of the Adh gene in three drosophilids. J Mol Evol 20:31–37

    PubMed  Google Scholar 

  • Daïnou O (1985) Polymorphisme et rôle physiologique de l'amylase chezDrosophila melanogaster et espèces affines. Thesis, University of Paris VII, Paris

    Google Scholar 

  • Dawid IB (1972) Evolution of mitochondrial DNA sequences inXenopus. Dev Biol 29:139–151

    PubMed  Google Scholar 

  • de Bruijn MHL (1983)Drosophila melanogaster mitochondrial DNA, a novel organization and genetic code. Nature 304:234–241

    PubMed  Google Scholar 

  • Dover G, Brown S, Coen E, Dallas J, Strachan T, Trick M (1982) The dynamics of genome evolution and species differentiation. In: Dover G, Flavell R (eds) Genome evolution. Academic Press, London, p 343

    Google Scholar 

  • Dowsett AP (1983) Closely related species ofDrosophila can contain different libraries of middle repetitive DNA sequences. Chromosoma 88:104–108

    PubMed  Google Scholar 

  • Eisses KT, Van Dijk H, Van Delden W (1979) Genetic differentiation within themelanogaster species group of the genusDrosophila (Sophophora). Evolution 33:1063–1068

    Google Scholar 

  • Fauron MC-R, Wolstenholme DR (1976) Structural heterogeneity of mitochondrial DNA molecules within the genusDrosophila. Proc Natl Acad Sci USA 73:3623–3627

    PubMed  Google Scholar 

  • Fauron MC-R, Wolstenholme DR (1980a) Extensive diversity amongDrosophila species with respect to nucleotide sequences within the adenine+thymine-rich region of mitochondrial DNA molecules. Nucleic Acids Res 8:2439–2452

    PubMed  Google Scholar 

  • Fauron MC-R, Wolstenholme DR (1980b) Intraspecific diversity of nucleotide sequences within the adenine+thyminerich region of mitochondrial DNA molecules ofDrosophila mauritiana, Drosophila melanogaster andDrosophila simulans. Nucleic Acids Res 8:5391–5410

    PubMed  Google Scholar 

  • Ferris SD, Wilson AC, Brown WM (1981) Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. Proc Natl Acad Sci USA 78:2432–2436

    PubMed  Google Scholar 

  • Ferris SD, Sage RD, Prager EM, Ritte U, Wilson AC (1983) Mitochondrial DNA evolution in mice. Genetics 105:681–721

    PubMed  Google Scholar 

  • Harrison RG, Rand DM, Wheeler WC (1985) Mitochondrial DNA size variation within individual crickets. Science 228:1446–1448

    Google Scholar 

  • Klukas CK, Dawid IB (1976) Characterization and mapping of mitochondrial ribosomal RNA and mitochondrial DNA inDrosophila melanogaster. Cell 9:615–625

    PubMed  Google Scholar 

  • Laird CD, McCarthy BJ (1968) Magnitude of interspecific nucleotide sequence variability inDrosophila. Genetics 60:303–322

    PubMed  Google Scholar 

  • Leigh Brown AJ, Ish-Horowicz D (1981) Evolution of the 87A and 87C heat-shock loci inDrosophila. Nature 290:677–682

    PubMed  Google Scholar 

  • Lemeunier F (1979) Phylogénie des espèces deDrosophila du sous-groupemelanogaster analysée par des méthodes caryologiques et génétiques. Thesis, University of Paris VI, Paris

    Google Scholar 

  • Lemeunier F, Ashburner M (1976) Relationships within themelanogaster species subgroup of the genusDrosophila (Sophophora). II. Phylogenetic relationships between six species based upon polytene chromosome banding sequences. Proc Soc London [Biol] 193:275–294

    Google Scholar 

  • Lemeunier F, Ashburner M (1984) Relationships within themelanogaster species subgroup of the genusDrosophila (Sophophora). IV. The chromosomes of two new species. Chromosoma 89:343–351

    Google Scholar 

  • Lemeunier F, David JR, Tsacas L, Ashburner M (1985) Themelanogaster species group. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology ofDrosophila, vol 3e, chapter 10, in press

  • Mason PJ, Bishop JO (1980) Molecular cloning of part of the mitochondrial DNA ofDrosophila melanogaster. Biochem Biophys Res Commun 95:1268–1274

    PubMed  Google Scholar 

  • Merten SH, Pardue ML (1981) Mitochondrial DNA inDrosophila. An analysis of genome organization and transcription inDrosophila melanogaster andDrosophila virilis. J Mol Biol 153:1–21

    PubMed  Google Scholar 

  • Mounolou J-C, Monnerot M, Solignac M (1984) Génétique mitochondriale de la Drosophile. In: Ben Hamida F (ed) 4ème Ecole Franco-Africaine de biologie moléculaire. Agence Coopérative Culturelle et Technique, p 183

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    PubMed  Google Scholar 

  • Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163

    PubMed  Google Scholar 

  • Ohnishi S, Kawanishi M, Watanabe TK (1983) Biochemical phylogenies ofDrosophila: protein differences detected by two-dimensional electrophoresis. Genetica 61:55–63

    Google Scholar 

  • Reilly JG, Thomas CA Jr (1980) Length polymorphisms, restriction site variation and maternal inheritance of mitochondrial DNA ofDrosophila melanogaster. Plasmid 3:109–115

    PubMed  Google Scholar 

  • Santamaria P (1975) Transplantation of nuclei between eggs of different species ofDrosophila. Wilhelm Roux Archiv 178:89–98

    Google Scholar 

  • Shah DM, Langley CH (1979) Inter- and intraspecific variation in restriction maps ofDrosophila mitochondrial DNAs. Nature 281:696–699

    PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. WH Freeman, San Francisco

    Google Scholar 

  • Solignac M, Monnerot M, Mounulou J-C (1983) Mitochondrial DNA heteroplasmy inDrosophila mauritiana. Proc Natl Acad Sci USA 80:6942–6946

    PubMed  Google Scholar 

  • Solignac M, Génermont J, Monnerot M, Mounolou J-C (1984) Genetics of mitochondria inDrosophila: mtDNA inheritance in heteroplasmic strains ofD. mauritiana. Mol Gen Genet 197:183–188

    Google Scholar 

  • Tartof KD (1979) Evolution of transcribed and spacer sequences in the ribosomal RNA genes ofDrosophila. Cell 17:607–614

    PubMed  Google Scholar 

  • Tsakas SC, Tsacas L (1984) A phenetic tree of eighteen species of themelanogaster group ofDrosophila using allozyme data as compared with classifications based on other criteria. Genetica 64:139–144

    Google Scholar 

  • Wolstenholme DR, Clary DO (1985) Sequence evolution ofDrosophila mitochondrial DNA. Genetics 109:725–744

    PubMed  Google Scholar 

  • Zwiebel LJ, Cohn VH, Wright DR, Moore GP (1982) Evolution of single-copy DNA and the ADH gene in seven drosophilids. J Mol Biol 19:62–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solignac, M., Monnerot, M. & Mounolou, JC. Mitochondrial DNA evolution in themelanogaster species subgroup ofDrosophila . J Mol Evol 23, 31–40 (1986). https://doi.org/10.1007/BF02100996

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100996

Key words

Navigation