Skip to main content
Log in

Organization and nucleotide sequence of a transcriptional unit ofMethanococcus vannielii comprising genes for protein synthesis elongation factors and ribosomal proteins

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

By a chromosome walking strategy the DNA region fromMethanococcus vannielii flanking the genes for protein synthesis elongation factor (EF) 1α and EF-2 was cloned and sequenced. A gene organization of 5′-β′-open reading frame (ORF) 1-ORF2-S12-S7-EF-2-EF-1α-S10-ORF3-ORF4-3′ was found where β′, S12, S7, S10, EF-2, and EF-1α represent gene products with sequences similar to the β′ subunit of RNA polymerase, ribosomal proteins S12, S7, and S10, and EF-G and EF-Tu fromEscherichia coli, respectively. ORF1-4 represent gene products with no known eubacterial counterparts. Northern blot analysis of transcripts and nuclease S1 mapping showed that transcription initiates between β′ and ORF1 and terminates at the 3′ side of the S10 gene and that the genes from ORF1 to S10 are contranscribed. Apart from the presence of two additional ORFs, ORF1 and ORF2, and of the gene for S10, this organization is identical to that of the eubacterial “streptomycin operon.” ORF1 displays sequence similarity to rat liver ribosomal protein L30 and may represent one of the “additional” ribosomal proteins ofMethanococcus. The sequenced part of the β′ gene and the EF-2 and EF-1α gene products fromMethanococcus, are more similar to their eukaryotic than to their eubacterial counterparts. It appears, therefore, that the genetic organization of the translational components resembles the situation in eubacteria, whereas their primary structures are more eukaryotic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison R, Moyle LA, Shales M Ingles CJ (1985) Extensive homology among the largest subunits of eucaryotic and prokaryotic RNA polymerases. Cell 42:599–610

    Article  PubMed  Google Scholar 

  • Bachmann BJ (1983) Linkage map ofEscherichia coli K-12, edition 7. Microbiol Rev 47:180–230

    PubMed  Google Scholar 

  • Beauclerk AAD, Hummel H, Holmes DJ, Böck A, Cundliffe E (1985) Studies of the GTPase domain of archaebacterial ribosomes. Eur J Biochem 151:245–255

    Article  PubMed  Google Scholar 

  • Beckler GS, Reeve JN (1986) Conservation of primary structure in thehisI gene of the archaebacterium,Methanococcus vannielli, the eubacteriumEscherichia coli, and the eucaryoteSaccharomyces cerevisiae. Mol Gen Genet 204:133–140

    Article  PubMed  Google Scholar 

  • Berk AJ, Sharp PA (1977) Sizing and mapping of earlyAdenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12:721–732

    Article  PubMed  Google Scholar 

  • Böck A, Kandler O (1985) Antibiotic sensitivity of archaebacteria. In: Woese CR, Wolfe R (eds) The bacteria VIII. Archaebacteria. Academic Press, London, pp 525–544

    Google Scholar 

  • Chen EJ, Seeburg PH (1985) Supercoil sequencing: fast and simple method for sequencing plasmid DNA. DNA 4:165–170

    PubMed  Google Scholar 

  • Douglas C, Achatz F, Böck A (1980) Electrophoretic characterization of ribosomal proteins from methanogenic bacteria. Zentralbl Bakteriol Mikrobiol Hyg I Abt Orig C1:1–11

    Google Scholar 

  • Henikoff S (1984) Unidirectional digestion with exonuclease III creates target breakpoints for DNA sequencing. Gene 28: 351–359

    Article  PubMed  Google Scholar 

  • Lechner K, Böck A (1987) Cloning and nucleotide sequence of the gene for an archaebacterial protein synthesis elongation factor Tu. Mol Gen, Genet 208:523–528

    Google Scholar 

  • Lechner K, Heller G, Böck A (1988) Gene for the diphtheria toxin-susceptible elongation factor 2 fromMethanococcus vannielii. Nucleic Acids Res 16:7817–7826

    PubMed  Google Scholar 

  • Lehrach H, Diamond D, Wozney JM, Boedtker H (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743–4751

    Article  PubMed  Google Scholar 

  • Lindahl L, Zengel JM (1986) Ribosomal genes inEscherichia coli. Annu Rev Genet 20:297–326

    Article  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  • Montandon PE, Stutz E (1984) The genes for the ribosomal proteins S12 and S7 are clustered with the gene for the EF-Tu protein on the chloroplast genome ofEuglena gracilis. Nucleic Acids Res 12:2851–2859

    PubMed  Google Scholar 

  • Müller B, Allmansberger R, Klein A (1985) Termination of a transcription unit comprising, highly expressed genes in the archaebacteriumMethanococcus voltae. Nucleic Acids Res 13:6439–6445.

    PubMed  Google Scholar 

  • Nakanishi O, Oyanagi M, Kuwano J, Tanaka T, Nakayama T, Mitsui H, Nabeshima YI, Ogata K (1985) Molecular cloning and nucleotide sequences of cDNAs specific forrat liver ribosomal proteins S17 and L30. Gene 35:289–296

    Article  PubMed  Google Scholar 

  • Nomura M (1986) Regulation of the synthesis of ribosomes and ribosomal components inEscherichia coli: translational regulation and feedback loops. In: Booth J, Higgins C (eds) Regulation of gene expression. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Nomura M, Gourse R, Baughman G (1984) Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem 53:75–117

    Article  PubMed  Google Scholar 

  • Ohama T, Yamao F, Muto A, Osawa S (1987) Organization and codon usage of the streptomycin operon inMicrococcus luteus, a bacterium with a high genomic G+C content. J Bacteriol 169:4770–4777

    PubMed  Google Scholar 

  • Ohkubo S, Muto A, Kawauchi Y, Yamao F, Osawa S (1987) The ribosomal protein gene cluster ofMycoplasma capricolum. Mol Gen Genet 210:314–322

    Article  PubMed  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort,Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  Google Scholar 

  • Ovchinnikov YA, Monastyrskaya GS, Gubanov VV, Guryev SO, Salomatina JS, Shuvaeva TM, Lipkin VM, Sverdlov ED (1982) The primary structure ofE. coli RNA polymerase. Nucleotide sequence of therpoC and amino acid sequence of the β′-subunit. Nucleic Acids Res 10:4035–4044

    PubMed  Google Scholar 

  • Planta RJ, Mager WH, Leer RJ, Woult LP, Raué HA, El Baradi TTAL (1987) Structure and expression of ribosomal protein genes in yeast. in: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, New York.

    Google Scholar 

  • Post LE, Nomura M (1980) DNA sequences from the stroperon ofEscherichia coli. J Biol Chem 255:4660–4666

    PubMed  Google Scholar 

  • Reiter WD, Palm P, Zillig W (1988). Analysis of transcription in the archaebacteriumSulfolobus indicates that archaebacterial promoters are homologous to eucaryotic polII promoters. Nucleic Acids Res 16:1–19

    PubMed  Google Scholar 

  • Royden CS, Pirrotta V, Jan LY (1987) Thetko locus, site of a behavioral mutation inD. melanogaster, codes for a protein homologous to prokaryotic ribosomal protein S12. Cell 51: 165–173

    Article  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA-sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    PubMed  Google Scholar 

  • Schmid G, Böck A (1982) The ribosomal protein composition of five methanogenic bacteria. Zentralbl Bakteriol Mikrobiol Hyg I Abt Orig C3:347–353

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2048

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    PubMed  Google Scholar 

  • Thomm M, Wich G (1988) An archaebacterial promoter element for stable RNA genes with homology to the TATA box of higher eucaryotes. Nucleic Acids Res 16:151–163

    PubMed  Google Scholar 

  • Tiboni O, Di Pasquale G (1987) Organization of genes for ribosomal proteins S7 and S12, elongation factors EF-Tu and EF-G in the cyanobacteriumSpirulina platensis. Biochim Biophys Acta 908:113–122

    PubMed  Google Scholar 

  • Wich G, Hummel H, Jarsch M, Bär U, Böck A (1986) Transcription signals for stable RNA genes inMethanococcus. Nucleic Acids Res 14:2459–2479

    PubMed  Google Scholar 

  • Wittmann-Liebold B (1987) Ribosomal proteins: their structure and evolution. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer, New York

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–109

    Article  PubMed  Google Scholar 

  • Zillig W, Palm P, Reiter WD, Gropp F, Pühler G, Klenk HP (1988) Comparative evaluation of gene expression in archaebacteria. Eur J Biochem 173:473–482

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lechner, K., Heller, G. & Böck, A. Organization and nucleotide sequence of a transcriptional unit ofMethanococcus vannielii comprising genes for protein synthesis elongation factors and ribosomal proteins. J Mol Evol 29, 20–27 (1989). https://doi.org/10.1007/BF02106178

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02106178

Key words

Navigation