Skip to main content
Log in

Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

We examined the tempo and mode of mitochondrial DNA (mtDNA) evolution in six species of crucifers from two genera,Brassica andRaphanus. The six mtDNAs have undergone numerous internal rearrangements and therefore differ dramatically with respect to the sizes of their subgenomic circular chromosomes. Between 3 and 14 inversions must be postulated to account for the structural differences found between any two species. In contrast, these mtDNAs are extremely similar in primary sequence, differing at only 1–8 out of every 1000 bp. The point mutation rate in these plant mtDNAs is roughly 4 times slower than in land plant chloroplast DNA (cpDNA) and 100 times slower than in animal mtDNA. Conversely, the rate of rearrangements is extraordinarily faster in plant mtDNA than in cpDNA and animal mtDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey-Serres J, Hanson DK, Fox TD, Leaver CJ (1986) Mitochondrial genome rearrangement leads to extension and relocation of the cytochrome c oxidase subunit I gene inSorghum. Cell 47:567–576

    Google Scholar 

  • Bland MM, Matzinger DF, Levings CS III (1985) Comparison of the mitochondrial genome ofNicotiana tabacum with its progenitor species. Theor Appl Genet 69:535–541

    Google Scholar 

  • Bland MM, Levings CS III, Matzinger DF (1986) The tobacco mitochondrial ATPase subunit 9 gene is closely linked to an open reading frame for a ribosomal protein. Mol Gen Genet 204:8–16

    Google Scholar 

  • Broach JR (1982) The yeast plasmid 2 micron circle. Cell 28:203–204

    Google Scholar 

  • Brown WM (1983) Evolution of animal mitochondrial DNA. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland MA, pp 62–88

    Google Scholar 

  • Brown WM (1985) The mitochondrial genome of animals. In: MacIntyre RJ (ed) Monographs in evolutionary biology: molecular evolutionary genetics. Plenum, New York, pp 95–130

    Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    Google Scholar 

  • Chetrit P, Mathieu C, Muller JP, Vedel F (1984) Physical and gene mapping of cauliflower (Brassica oleracea) mitochondrial DNA. Curr Genet 8:413–421

    Google Scholar 

  • Clayton DA (1984) Transcription of the animal mitochondrial genome. Annu Rev Biochem 53:573–594

    Google Scholar 

  • Dewey RE, Levings CS III, Timothy DH (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44:439–449

    Google Scholar 

  • Gray J (1986) Wonders of chloroplast DNA. Nature 322:501–502

    Google Scholar 

  • Kolodner R, Tewari KK (1972) Physicochemical characterization of mitochondrial DNA from pea leaves. Proc Natl Acad Sci USA 69:1830–1834

    Google Scholar 

  • Lebacq P, Vedel F (1981) Sal I restriction enzyme analysis of chloroplast and mitochondrial DNAs in the genusBrassica. Plant Sci Lett 23:1–9

    Google Scholar 

  • Lonsdale DM (1988) The plant mitochondrial genome. In: Davies DD (ed) The biochemistry of plants, vol. II, biochemistry of metabolism. Academic Press, Orlando FL (In press)

    Google Scholar 

  • Makaroff CA, Plamer JD (1987) Extensive mitochondrial-specific transcription of theBrassica campestris mitochondrial genome. Nucleic Acids Res 15:5141–5156

    Google Scholar 

  • Makaroff CA, Palmer JD (1988) Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile cytoplasm of Ogura radish. Mol Cell Biol 8:1474–1480

    Google Scholar 

  • McClean PE, Hanson MR (1986) Mitochondrial DNA sequence divergence amongLycopersicon and relatedSolanum species. Genetics 112:649–667

    Google Scholar 

  • Moritz C, Brown WM (1987) Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci USA 84:7183–7187

    Google Scholar 

  • Palmer JD (1985a) Evolution of chloroplast and mitochondrial DNA in plants and algae. In: MacIntyre RJ (ed) Monographs in evolutionary biology: molecular evolutionary genetics. Plenum, New York, pp 131–240

    Google Scholar 

  • Palmer JD (1985b) Comparative organization of chloroplast genomes. Annu Rev Genet 19:325–345

    Google Scholar 

  • Palmer JD (1986) Isolation and structural analysis of chloroplast DNA. Methods Enzymol 118:167–186

    Google Scholar 

  • Palmer JD (1988) Intraspecific variation and multicircularity inBrassica mitochondrial DNAs. Genetics 118:341–351.

    Google Scholar 

  • Palmer JD, Herbon LA (1986) Tripartite mitochondrial genomes ofBrassica andRaphanus: reversal of repeat configurations by inversion. Nucleic Acids Res 14:9755–9765

    Google Scholar 

  • Palmer JD, Herbon LA (1987) Unicircular structure of theBrassica hirta mitochondrial genome. Curr Genet 11:565–570

    Google Scholar 

  • Palmer JD, Shields CR (1984) Tripartite structure of theBrassica campestris mitochondrial genome. Nature 307:437–440

    Google Scholar 

  • Palmer JD, Shields CR, Cohen DB, Orton TJ (1983a) Chloroplast DNA evolution and the origin of amphidiploidBrassica species. Theor Appl Genet 65:181–189

    Google Scholar 

  • Palmer JD, Shields CR, Cohen DB, Orton TJ (1983b) An unusual mitochondrial DNA plasmid in the genusBrassica. Nature 301:725–728

    Google Scholar 

  • Pring DR, Lonsdale DM (1985) Molecular biology of higher plant mitochondrial DNA. Int Rev Cytol 97:1–46

    Google Scholar 

  • Schardl CL, Pring DR, Lonsdale DM (1985) Mitochondrial DNA rearrangements associated with fertile revertants of S-type male-sterile maize. Cell 43:361–368

    Google Scholar 

  • Sederoff RR (1987) Molecular mechanisms of mitochondrialgenome evolution in higher plants. Am Nat 130:S30-S45

    Google Scholar 

  • Sederoff RR, Levings CS III, Timothy DH, Hu WWL (1981) Evolution of DNA sequence organization in mitochondrial genomes ofZea. Proc Natl Acad Sci USA 78:5953–5957

    Google Scholar 

  • Siculella L, Palmer JC (1988) Physical and gene organization of mitochondrial DNA in fertile and male sterile sunflower: CMS-associated alterations in structure and transcription of theatpA gene. Nucleic Acids Res 16:3787–3799

    Google Scholar 

  • Stern DB, Palmer JD (1984) Recombination sequences in plant mitochondrial genomes: diversity and homologies to known mitochondrial genes. Nucleic Acids Res 12:6141–6157

    Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25:793–803

    Google Scholar 

  • Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400

    Google Scholar 

  • Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Google Scholar 

  • Young EG, Hanson MR (1987) A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell 50:41–49

    Google Scholar 

  • Zurawski G, Clegg MT (1987) Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Annu Rev Plant Physiol 38: 391–418

    Google Scholar 

  • Zurawski G, Clegg MT, Brown AHD (1984) The nature of nucleotide sequence divergence between barley and maize chloroplast DNA. Genetics 106:735–749

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, J.D., Herbon, L.A. Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence. J Mol Evol 28, 87–97 (1988). https://doi.org/10.1007/BF02143500

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02143500

Key words

Navigation