Skip to main content
Log in

Flavin nucleotides and flavoproteins

  • Published:
Experientia Aims and scope Submit manuscript

Zusammenfassung

Der vorliegende Überblick ist eine kurze Zusammenfassung der gegenwärtigen Entwicklung auf dem Gebiete der Flavinnukleotide und der Flavoproteine.

Beschrieben werden verbesserte chromatographische Methoden (Ionenaustausch, Spaltung und Adsorption) für die Isolierung von Flavinnukleotiden. Diese Substanzen können durch spezifische mikrobiologische und enzymatische Untersuchungen, Absorptions- und Fluoreszenzspektra und Papierchromatographie identifiziert und voneinander unterschieden werden.

Drei Klassen von Flavinen werden im Hinblick auf verschiedene Eigenschaften einschliesslich chemischer und enzymatischer Synthese und enzymatischen Abbaus besprochen: a) Vitamin-Analoga (Riboflavin, Riboflavinylglukosid und Lyxoflavin); b) Flavinmononukleotide (Riboflavin-5′-Phosphat, Riboflavin-4′-5′-Phosphat [Ringform] und Riboflavin-5′-Pyrophosphat); c) Flavindinukleotide (Flavin-Adenin-Dinukleotid und ein zyklisches Analogon). Ausserdem werden Metallo-Flavine und ein neuerdings entdeckter Elektronenträger, genannt Pseudoflavin, behandelt.

Die bekannten Flavoproteine sind in einer Tabelle in bezug auf die katalysierte Reaktion zusammengefasst. Für jedes Enzym werden das Flavin und andere prosthetische Gruppen angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. Kuhn, P. György, andT. Wagner-Jauregg, Ber. dtsch. chem Ges.66, 317 (1933).

    Article  Google Scholar 

  2. P. Ellinger andW. Koschara, Ber. dtsch. chem. Ges.66, 315 (1933).

    Article  Google Scholar 

  3. R. Kuhn, K. Reinemund, H. Kaltschmitt, R. Ströbele, andH. Trischmann, Naturwissenschaften23, 260 (1935).

    Article  CAS  Google Scholar 

  4. P. Karrer, K. Schöpp, andF. Benz, Helv. chim. Acta18, 426 (1935).

    Article  CAS  Google Scholar 

  5. O. Warburg andW. Christian, Biochem. Z.254, 438 (1932);257, 492 (1933).

    CAS  Google Scholar 

  6. H. Theorell, Biochem. Z.272, 155 (1934);278, 263 (1935);290, 293 (1937).

    CAS  Google Scholar 

  7. O. Warburg andW. Christian, Biochem. Z.295, 261 (1938);296, 294 (1938);297, 417 (1938);298, 150 (1938).

    CAS  Google Scholar 

  8. H. Theorell inMethoden der Fermentforschung. Vol. III, ed. byE. Bamann andK. Myrbäck, Photo Offset Reproduction (Academic Press, Inc., New York, 1945, pp. 2361–84.

    Google Scholar 

  9. H. Theorell inThe Enzymes, Vol. II, Part 1, ed byJ. B. Sumner andK. Myrbäck (Academic Press, Inc., New York, 1951), pp. 335–56.

    Google Scholar 

  10. T. P. Singer andE. B. Kearney inThe Proteins, Vol. II, Part 2 (in press), ed. byH. Neurath andK. Bailey (Academic Press, Inc., New York, 1951).

    Google Scholar 

  11. E. E. Snell andF. M. Strong, Ind. Eng. Chem. Anal. Ed.11, 346 (1950).

    Article  Google Scholar 

  12. F. M. Huennekens andS. Felton, submitted toMethods in Enzymology, Vol. III, ed. byS. P. Colowick andN. O. Kaplan (Academic Press, Inc., New York).

  13. H. S. Corran, D. E. Green, andF. B. Straub, Biochem. J.33, 793 (1939).

    Article  CAS  Google Scholar 

  14. E. Haas, B. Horecker, andT. Hogness, J. Biol. Chem.136, 747 (1940).

    Article  CAS  Google Scholar 

  15. L. G. Whitby, Biochem. J.54, 437 (1953); see also Biochem. Biophys. Acta15, 148 (1954).

    Article  CAS  Google Scholar 

  16. O. Bessey, O. H. Lowry, andR. H. Love, J. Biol. Chem.180, 755 (1949).

    Article  CAS  Google Scholar 

  17. G. Weber, Biochem. J.47, 114 (1950).

    Article  CAS  Google Scholar 

  18. J. L. Crammer, Nature161, 349 (1948).

    CAS  Google Scholar 

  19. J. P. Hummel andO. Lindberg, J. Biol. Chem.180, 1 (1949).

    Article  CAS  Google Scholar 

  20. L. G. Whitby, Nature166, 479 (1950); Biochem. J.50, 433 (1952).

    Article  CAS  Google Scholar 

  21. E. Dimant, D. R. Sanadi, andF. M. Huennekens, J. Am. Chem. Soc.74, 5440 (1952).

    Article  CAS  Google Scholar 

  22. F. M. Huennekens, D. R. Sanadi, E. Dimant, andA. I. Schepartz, J. Amer. Chem. Soc.75, 3611 (1953).

    Article  CAS  Google Scholar 

  23. H. S. Forrest andA. R. Todd, J. Chem. Soc.1950, 3295.

  24. W. Forter andP. Karrer, Helv. chim. Acta36, 1530 (1953).

    Article  CAS  Google Scholar 

  25. E. Dimant, D. R. Sanadi, andF. M. Huennekens, J. Am. Chem. Soc.74, 5440 (1952).

    Article  CAS  Google Scholar 

  26. L. G. Whitby, Nature166, 479 (1950); Biochem. J.50, 433 (1952).

    Article  CAS  Google Scholar 

  27. E. S. Pallares andH. M. Garza, Arch. Biochem.22, 63 (1949).

    CAS  Google Scholar 

  28. R. Kuhn, K. Reinemund, H. Kalteschmitt, R. Ströbele, andH. Trischmann, Naturwissenschaften23, 260 (1935).

    Article  CAS  Google Scholar 

  29. P. Karrer, K. Schöpp, andF. Benz, Helv. chim. Acta18, 426 (1935).

    Article  CAS  Google Scholar 

  30. G. A. Emerson andK. Folkers, J. Amer. Chem. Soc.73, 2398 (1951);73, 5383 (1951).

    Article  CAS  Google Scholar 

  31. J. M. Cooperman, W. L. Marusich, J. Scheiner, L. Drekter, E. Ritter, andS. H. Rubin, Proc. Soc. Exp. Biol. and Med.81, 57 (1952).

    Article  CAS  Google Scholar 

  32. J. M. Cooperman, W. L. Marusich, J. Scheiner, L. Drekter, E. Ritter, andS. H. Rubin, Proc. Soc. Exp. Biol. and Med.81, 57 (1952).

    Article  CAS  Google Scholar 

  33. H. W. Bruins, M. L. Sunde, W. W. Cravens, andE. E. E. Snell, Proc. Soc. Exp. Biol. and Med.78, 535 (1951).

    Article  CAS  Google Scholar 

  34. R. C. Wahlstrom andB. C. Johnson, Proc. Soc. Exp. Biol. and Med.79, 636 (1952).

    Article  CAS  Google Scholar 

  35. T. S. Gardner, E. Wenis, andJ. Lee, Arch. Biochem.34, 98 (1951).

    Article  CAS  Google Scholar 

  36. E. E. Snell, O. A. Klatt, H. W. Bruins, andW. W. Cravens, Proc. Soc. Exp. Biol. and Med.82, 583 (1953).

    Article  CAS  Google Scholar 

  37. H. S. Forrest andA. R. Todd, J. Chem. Soc.1950, 3295.

  38. R. Kuhn, H. Rudy, andF. Weygand, Ber. dtsch. chem. Ges.69, 1543 (1936).

    Article  Google Scholar 

  39. L. A. Flexser andW. G. Farkas, XIIth Intern. Congr. pure appl. Chem., New York, Sept. 1951, Abstracts p. 71.

  40. M. Viscontini, C. Ebnöther, andP. Karrer, Helv. chim. Acta35, 457 (1952).

    Article  CAS  Google Scholar 

  41. E. B. Kearney andS. Englard, J. Biol. Chem.193, 821 (1951).

    Article  CAS  Google Scholar 

  42. E. B. Kearney, J. Biol. Chem.194, 747 (1952).

    Article  CAS  Google Scholar 

  43. L. A. Heppel andR. J. Hilmoe, J. Biol. Chem.188, 665 (1951)

    Article  CAS  Google Scholar 

  44. G. Serchi andG. Albertazzi,Chimica (Milan)8, 54 (1953); Chem. Abst.47, 9555f (1953).

    CAS  Google Scholar 

  45. R. G. Hall andH. G. Khorana, American Chemical Society Meeting, Kansas City, March 1954, Abstracts p. 23c.

  46. O. Warburg andW. Christian, Biochem. Z.298, 150 (1938).

    CAS  Google Scholar 

  47. Private communication from Dr.Henry R. Mahler.

  48. S. Christie, G. W. Kenner, andA. R. Todd, Nature170, 924 (1952); J. Chem. Soc.1954, 46.

    Article  CAS  Google Scholar 

  49. The chemical synthesis of FAD has been accomplished also by the direct condensation of FMN and AMP using di-p-tolyl carbodiimide as the catalyst [G. L. Kilgour andF. M. Huennekens, Fed. Proc.14, 236 (1955)].

    Google Scholar 

  50. J. R. Klein andH. I. Kohn, J. Biol. Chem.136, 177 (1940).

    Article  CAS  Google Scholar 

  51. A. Schrecker andA. Kornberg, J. Biol. Chem.182, 795 (1950).

    Article  CAS  Google Scholar 

  52. A. R. Todd, Harvey Lectures, New York, 1951.

  53. A. Kornberg andW. E. Pricer, J. Biol. Chem.182, 763 (1950).

    Article  CAS  Google Scholar 

  54. F. M. Huennekens, D. R. Sanadi, E. Dimant, andA. I. Schepartz, J. Amer. Chem. Soc.75, 3611 (1953).

    Article  CAS  Google Scholar 

  55. H. R. Mahler, N. K. Sarkar, L. P. Vernon, andR. A. Alberty, J. Biol. Chem.199, 585 (1952).

    Article  CAS  Google Scholar 

  56. H. R. Mahler, J. Biol. Chem.206, 13 (1954).

    Article  CAS  Google Scholar 

  57. H. R. Mahler andD. G. Elowe, J. Amer. Chem. Soc.75, 5769 (1953).

    Article  CAS  Google Scholar 

  58. M. Kunitz andM. R. McDonald, J. Gen. Physiol.29, 393 (1946).

    Article  CAS  Google Scholar 

  59. E. Ball, J. Gen. Physiol.29, 413 (1946).

    Article  CAS  Google Scholar 

  60. D. E. Green, S. Mh, H. R. Mahler, andR. M. Bock, J. Biol. Chem.206, I (1954).

    Article  Google Scholar 

  61. O. Warburg andW. Christian, Biochem. Z.266, 377 (1933).

    CAS  Google Scholar 

  62. E. Hass, Biochem. Z.298, 378 (1938).

    Google Scholar 

  63. H. S. Corran, D. E. Green, andF. B. Straub, Biochem. J.33, (1939).

  64. D. E. Green, W. E. Knox, andP. K. Stumpf, J. Biol. Chem.138, 775 (1941).

    Article  CAS  Google Scholar 

  65. D. E. Green (private communication).

  66. M. Kunitz andM. R. McDonald, J. Gen. Physiol.29, 393 (1946).

    Article  CAS  Google Scholar 

  67. E. Ball, J. Gen. Physiol.29, 413 (1946).

    Article  CAS  Google Scholar 

  68. H. R. Mahler, N. K. Sarkar, L. P. Vernon, andR. A. Alberty, J. Biol. Chem.199, 585 (1952).

    Article  CAS  Google Scholar 

  69. H. R. Mahler andD. G. Elowe, J. Amer. Chem. Soc.75, 5769 (1953).

    Article  CAS  Google Scholar 

  70. A. F. Brodie andJ. F. Gots, Fed. Proc.11, 191 (1952); see also J. Biol. Chem.199, 835 (1952).

    Google Scholar 

  71. M. I. Dolin, Arch. Biochem. Biophys.46, 483 (1953).

    Article  CAS  Google Scholar 

  72. M. I. Dolin, Biochim. Biophys. Acta15, 153 (1954).

    Article  CAS  Google Scholar 

  73. A. Nason, R. G. Abraham, andB. C. Averbach, Biochim. Biophys. Acta15, 159 (1954).

    Article  CAS  Google Scholar 

  74. B. L. Horecker, J. Biol. Chem.183, 593 (1950).

    Article  CAS  Google Scholar 

  75. E. Haas, B. Horecker, andT. Hogness, J. Biol. Chem.136, 747 (1940).

    Article  CAS  Google Scholar 

  76. D. J. D. Nicholas, A. Nason, andW. D. McElroy, Nature172, 34 (1953).

    Article  CAS  Google Scholar 

  77. A. Nason andH. J. Evans, J. Biol. Chem.202, 655 (1953).

    Article  CAS  Google Scholar 

  78. M. Zucker andA. Nason, Fed. Proc.13, 328 (1954).

    Google Scholar 

  79. B. Mackler, H. R. Mahler, andD. E. Green, J. Biol. Chem.210, 149 (1954).

    Article  CAS  Google Scholar 

  80. E. G. Ball, J. Biol. Chem.128, 51 (1939).

    Article  CAS  Google Scholar 

  81. H. S. Corran, J. G. Dewan, A. H. Gordon, andD. E. Green, Biochem. J.33, 1694 (1939).

    Article  CAS  Google Scholar 

  82. H. R. Mahler, B. Mackler, D. E. Green, andR. M. Bock, J. Biol. Chem.210, 465 (1954).

    Article  CAS  Google Scholar 

  83. A. H. Gordon, D. E. Green, andV. Subrahmanyan, Biochem. J.34, 764 (1940).

    Article  CAS  Google Scholar 

  84. W. E. Knox, J. Biol. Chem.163, 699 (1946).

    Article  CAS  Google Scholar 

  85. E. Negelein andH. Brömel, Biochem. Z.300, 225 (1939).

    CAS  Google Scholar 

  86. T. P. Singer andE. B. Kearney, Arch. Biochem.27, 348 (1950).

    CAS  Google Scholar 

  87. M. Blanchard, D. E. Green, V. Nocito, andS. Ratner, J. Biol. Chem.161, 583 (1945).

    Article  CAS  Google Scholar 

  88. M. Blanchard, D. E. Green, V. Nocito, andS. Ratner, J. Biol. Chem.155, 421 (1940).

    Article  Google Scholar 

  89. K. Burton, Biochem. J.50, 258 (1951).

    Article  CAS  Google Scholar 

  90. S. Ratner, V. Nocito, andD. E. Green, J. Biol. Chem.152, 119 (1944).

    Article  CAS  Google Scholar 

  91. J. L. Still andE. Sperling, J. Biol. Chem.182, 585 (1950).

    Article  CAS  Google Scholar 

  92. C. C. Baker, Arch. Biochem.41, 325 (1952).

    Article  CAS  Google Scholar 

  93. N. L. Edson, Biochem. J.41, 145 (1947); see however,W. B. Sutton, J. Biol. Chem.210, 309 (1954).

    Article  CAS  Google Scholar 

  94. I. Zelitch andS. Ochoa, J. Biol. Chem.201, 707 (1953).

    Article  CAS  Google Scholar 

  95. E. Kun, J. M. Dechary, andH. C. Pitot, J. Biol. Chem.210, 269 (1954).

    Article  CAS  Google Scholar 

  96. C. A. Appleby andR. K. Morton, Nature173, 749 (1954).

    Article  CAS  Google Scholar 

  97. R. Kapeller-Adler, Biochem. J.44, 70 (1949).

    Article  CAS  Google Scholar 

  98. G. C. Mueller andJ. A. Miller, J. Biol. Chem.185, 145 (1950).

    Article  CAS  Google Scholar 

  99. H. R. Mahler, J. Biol. Chem.206, 13 (1954).

    Article  CAS  Google Scholar 

  100. H. Beinert andF. L. Crane, Fed. Proc.13, 181 (1954).

    Google Scholar 

  101. F. L. Crane andH. Beinert, J. Am. Chem. Soc.76, 4491 (1954).

    Article  CAS  Google Scholar 

  102. F. G. Fischer, A. Roedig, andK. Rauch, Ann. Chem.552, 203 (1942); see alsoF. G. Fischer et al., Naturwissenschaften27, 197 (1939); Ann. Chem.530, 99 (1937).

    Article  CAS  Google Scholar 

  103. C. E. Coulthard, R. Michaelis, W. F. Short, G. Sykes, G. E. H. Shrinshire, A. F. B. Standfast, J. H. Birkinshaw, andH. Raistrick, Nature150, 634 (1952); Biochem. J.39, 24 (1945).

    Article  Google Scholar 

  104. A. L. Shug, P. W. Wilson, D. E. Green, andH. R. Mahler, J. Amer. Chem. Soc.76, 3355 (1954).

    Article  CAS  Google Scholar 

  105. H. R. Mahler andD. E. Green, Science120, 7 (1954)

    Article  CAS  Google Scholar 

  106. H. R. Mahler andD. E. Green, Science120, 7 (1954).

    Article  CAS  Google Scholar 

  107. B. Mackler, H. R. Mahler, andD. E. Green, J. Biol. Chem.210, 149 (1954).

    Article  CAS  Google Scholar 

  108. H. R. Mahler, B. Mackler, D. E. Green, andR. M. Bock, J. Biol. Chem.210, 465 (1954).

    Article  CAS  Google Scholar 

  109. D. J. D. Nicholas, A. Nason, andW. D. McElroy, Nature172, 34 (1953).

    Article  CAS  Google Scholar 

  110. A. Nason andH. J. Evans, J. Biol. Chem.202, 655 (1953).

    Article  CAS  Google Scholar 

  111. A. L. Shug, P. W. Wilson, D. E. Green, andH. R. Mahler, J. Amer. Chem. Soc.76, 3355 (1954).

    Article  CAS  Google Scholar 

  112. H. Beinert andF. L. Crane, Fed. Proc.13, 181 (1954).

    Google Scholar 

  113. F. M. Huennekens, R. E. Basford, Fed. Proc.13, 232 (1954); J. Biol. Chem.213, 951 (1955).

    Google Scholar 

  114. A. van Veen andW. Mertens, cited inBiological Oxidations byC. Oppenheimer andK. Stern (Interscience Publishers, New York, 1939), pp. 233–237.

    Google Scholar 

  115. N. Edson andF. Cousins, Nature171, 702 (1953).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The experimental work from this laboratory, referred to in the review, has been supported generously by research grants from Eli Lilly and Co., Initiative 171 of the state of Washington, and by the U.S. Public Health Service. The author would like also to express his appreciation to the following colleagues for their collaboration on various problems in this field: Drs.D. R. Sanadi, E. Dimant, A. Schepartz, H. R. Mahler, B. Gabrio, andR. E. Basford, and Messrs.S. Felton andG. Kilgour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huennekens, F.M. Flavin nucleotides and flavoproteins. Experientia 12, 1–6 (1956). https://doi.org/10.1007/BF02156978

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02156978

Keywords

Navigation