Skip to main content
Log in

Phylogenetic analyses of complete cytochromeb genes of the order Carnivora with particular emphasis on the Caniformia

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The evolutionary relationships among the Carnivora were studied in a phylogenetic analysis based on the complete mitochondrial cytochromeb gene. The study, which addressed primarily the relationships among the Caniformia, included 4 feliform and 26 caniform species, with 9 pinnipeds. The analysis identified five caniform clades: Canidae, Ailuridae (with the monotypic lesser panda), Musteloidea (Mustelidae+Procyonidae), Ursidae (including the giant panda), and Pinnipedia. The closest relatives of the Pinnipedia among terrestrial caniforms were not identified conclusively. Our analysis shows that the skunks are only distantly related to remaining mustelids (Mustelidae sensu stricto) and that the family Mustelidae, including the skunks, is paraphyletic. The relationship among the five caniform clades was unresolved, suggesting an evolutionary separation within a relatively short period of time. Based on distance values, we propose that this primary diversification took place ∼45 million years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anbinder EM (1980) The karyology and evolution of pinnipeds. Akademia Nauk, Moscow, USSR

    Google Scholar 

  • Anderson S, De Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Google Scholar 

  • Arnason U (1974) Comparative chromosome studies in Pinnipedia. Hereditas 76:179–226

    Google Scholar 

  • Arnason U (1977) The relationship between the four principal pinniped karyotypes. Hereditas 87:227–242

    Google Scholar 

  • Arnason U, Bodin K, Gullberg A, Ledje C, Mouchaty S (1995) A molecular view of pinniped relationships with particular emphasis on the true seals. J Mol Evol 40:78–85

    Google Scholar 

  • Arnason U, Gullberg A, Widegren B (1991) The complete nucleotide sequence of the mitochondrial DNA of the fin whale,Balaenoptera physalus. J Mol Evol 33:556–568

    Google Scholar 

  • Arnason U, Gullberg A (1994) Relationship of baleen whales established by cytochromeb gene sequence comparison. Nature 367:726–728

    Google Scholar 

  • Arnason U, Gullberg A (1996) Sequence analyses of the mitochondrial cytochromeb gene identify five primary evolutionary lineages of extant cetaceans. Mol Biol Evol (in press)

  • Arnason U, Gullberg A, Johnsson E, Ledje C (1993) The nucleotide sequence of the mitochondrial DNA molecule of the grey seal,Halichoerus grypus, and a comparison with mitochondrial sequences of other true seals. J Mol Evol 37:323–330

    Google Scholar 

  • Arnason U, Johnsson E (1992) The complete mitochondrial DNA sequence of the harbor seal,Phoca vitulina. J Mol Evol 34:493–505

    Google Scholar 

  • Arnason U, Ledje C (1993) The use of highly repetitive DNA for resolving cetacean and pinniped phylogenies. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny, placentals, vol 2. Springer-Verlag, New York, pp 74–80

    Google Scholar 

  • Arnason U, Widegren B (1986) Pinniped phylogeny enlightened by molecular hybridizations using highly repetitive DNA. Mol Biol Evol 3:356–365

    Google Scholar 

  • Barnes LG (1979) Fossil enaliarctine pinnipeds (Mammalia: Otariidae) from Pyramid Hill, Kern county, California. Contrib Sci Nat Hist Museum Los Angeles 318:1–41

    Google Scholar 

  • Berta A, Ray CE, Wyss AR (1989) Skeleton of the oldest known pinnipedEnaliarctos mealsi. Science 244:60–62

    Google Scholar 

  • Bryant HN, Russell AP, Fitch WD (1993) Phylogenetic relationships within the extant Mustelidae (Carnivora): appraisal of the cladistic status of the Simpsonian subfamilies. Zool J Linn Soc 108:301–334

    Google Scholar 

  • Cao Y, Adachi J, Janke A, Pääbo S, Hasegawa M (1994) Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of a tree based on a single gene. J Mol Evol 39:519–527

    Google Scholar 

  • Czelusniak J, Goodman M, Koop BF, Tagle DA, Shoshani J, Braunitzer G, Kleinschmidt TK, de Jong WW, Matsuda G (1990) Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria. In: Genoways HH (ed) Current mammalogy, vol 2. Plenum Publishing, New York, pp 545–572

    Google Scholar 

  • de Jong WW (1986) Protein sequence evidence for monophyly of the carnivore families Procyonidae and Mustelidae. Mol Biol Evol 3:276–281

    Google Scholar 

  • de Jong WW, Leunissen JAM, Wistow GJ (1993) Eye lens crystallins and the phylogeny of placental orders: evidence for a macroscelid-paenungulate clade? In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny, placentals, vol 2. Springer-Verlag, New York, pp 5–12

    Google Scholar 

  • Dragoo JW, Bradley RD, Honeycutt RL, Templeton JW (1993) Phylogenetic relationship among the skunks: a molecular perspective. J Mammal Evol 1:255–267

    Google Scholar 

  • Fay FH, Rausch VR, Feltz ET (1967) Cytogenetic comparison of some pinnipeds (Mammalia: Eutheria). Can J Zool 45:773–778

    Google Scholar 

  • Felsenstein J (1993) PHYLIP, 3.5c ed. Department of Genetics SK-50, University of Washington, Seattle

    Google Scholar 

  • Flynn JJ, Neff NA, Tedford RH (1988) Phylogeny of the carnivora. In: Benton MJ (ed) The phylogeny and classification of the tetrapods, mammals, vol 2. Clarendon Press, Oxford, pp 73–115

    Google Scholar 

  • Honeycutt RL, Adkins RM (1993) Higher level systematics of eutherian mammals: an assessment of molecular characters and phylogenetic hypotheses. Annu Rev Ecol Syst 24:279–305

    Google Scholar 

  • Hunt RM Jr, Tedford RH (1993) Phylogenetic relationships within the aeluroid carnivora and implications of their temporal and geographic distribution. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny, placentals, vol 2. Springer-Verlag, New York, pp 53–73

    Google Scholar 

  • Irwin DM, Arnason U (1994) Cytochromeb gene of marine mammals: phylogeny and evolution. J Mammal Evol 2:37–55

    Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochromeb gene of mammals. J Mol Evol 32:128–144

    Google Scholar 

  • Janczewski DN, Modi WS, Stephens JC, O'Brien SJ (1995) Molecular evolution of mitochondrial 12S RNA and cytochromeb sequences in the pantherine lineage of Felidae. Mol Biol Evol 12:690–707

    Google Scholar 

  • Janke A, Feldmaier-Fuchs G, Thomas WK, von Haeseler A, Pääbo S (1994) The marsupial mitochondrial genome and the evolution of placental mammals. Genetics 137:243–256

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York

    Google Scholar 

  • Krettek A, Gullberg A, Arnason U (1995) Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog,Erinaceus europaeus, and the phylogenetic position of the Lipotyphla. J Mol Evol (in press)

  • Lento GM, Hickson RE, Chambers GK, Penny D (1995) Use of spectral analysis to test hypotheses on the origin of pinnipeds. Mol Biol Evol 12:28–52

    Google Scholar 

  • Li W-H, Gouy M, Sharp PM, O'hUigin C, Yang Y-W (1990) Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc Natl Acad Sci USA 87:6703–6707

    Google Scholar 

  • Maddison WP, Maddison DR (1992) MacClade. Analysis of phylogeny and character evolution, 3.02 ed. Sinauer Associates, Sunderland, MA, pp 1–398

    Google Scholar 

  • Martin LD (1989) Fossil history of the terrestrial Carnivora. In: Gittleman JL (ed) Carnivore behaviour, ecology, and evolution. Chapman and Hall, London, pp 536–568

    Google Scholar 

  • O'Brien SJ, Nash WG, Wildt DE, Bush ME, Benveniste RE (1985) A molecular solution to the riddle of the giant panda's phylogeny. Nature 317:140–144

    Google Scholar 

  • Repenning CA, Ray CE, Grigorescu D (1979) Pinniped biogeography. In: Gray J, Boucot AJ (eds) Historical biogeography, plate tectonics, and the changing environment. Oregon State University Press, Corvallis, pp 357–369

    Google Scholar 

  • Repenning CA, Tedford RH (1977) Otarioid seals of the Neogene. US Government Printing Office, Washington, DC

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2 ed. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sarich VM (1969) Pinniped phylogeny. Syst Zool 18:416–422

    Google Scholar 

  • Sarich VM (1973) The giant panda is a bear. Nature 245:218–220

    Google Scholar 

  • Shields GF, Kocher TD (1991) Phylogenetic relationships of North American ursids based on analysis of mitochondrial DNA. Evolution 45:218–221

    Google Scholar 

  • Simpson GG (1945) The principles of classification and a classification of the mammals. Bull Am Mus Nat Hist, pp 1–350

  • Stanley HF, Kadwell M, Wheeler JC (1994) Molecular evolution of the family Camelidae: a mitochondrial DNA study. Proc R Soc Lond [Biol] 256:1–6

    Google Scholar 

  • Swofford DL (1993) PAUP, phylogenetic analysis using parsimony, 3.1.1 ed. Computer program distributed by the Illinois Natural History Survey, Champaign, IL

    Google Scholar 

  • Tedford RH (1976) Relationship of pinnipeds to other carnivores (Mammalia). Syst Zool 25:363–374

    Google Scholar 

  • Veron G, Catzeflis FM (1993) Phylogenetic relationships of the endemic malagasy carnivore Cryptoprocta ferox (Aeluroidea): DNA/DNA hybridizatione xperiments. J Mammal Evol 1:169–185

    Google Scholar 

  • Vrana PB, Milinkovitch MC, Powell JR, Wheeler WC (1994) Higher level relationships of the arctoid carnivora based on sequence data and “total evidence”, Mol Phylogenet Evol 3:47–58

    Google Scholar 

  • Wayne RK, Benveniste RE, Janczewski DN, O'Brien SJ (1989) Molecular and biochemical evolution of the Carnivora. In: Gittleman JL (ed) Carnivore behavior, ecology, and evolution. Cornell University Press, Ithaca, NY, pp 465–494

    Google Scholar 

  • Wozencraft WC (1989) The phylogeny of the recent carnivora. In: Gittleman JL (ed) Carnivore behavior, ecology, and evolution. Chapman and Hall, London, pp 495–535

    Google Scholar 

  • Wurster-Hill DH, Centerwall WR (1982) The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids. Cytogenet Cell Genet 34:178–192

    Google Scholar 

  • Wyss AR (1987) The walrus auditory region and the monophyly of pinnipeds. Am Mus Novit 2871:1–13

    Google Scholar 

  • Wyss AR (1988) Evidence from flipper structure for a single origin of pinnipeds, Nature 334:427–428

    Google Scholar 

  • Wyss AR, Flynn JJ (1993) A phylogenetic analysis and definition of the Carnivora. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny, placentals, vol 2. Springer-Verlag, New York, pp 32–52

    Google Scholar 

  • Xu X, Arnason U (1994) The complete mitochondrial DNA sequence of the horse,Equus caballus: extensive heteroplasmy of the control region. Gene 148:357–362

    Google Scholar 

  • Zhang Y-P, Ryder OA (1993) Mitochondrial DNA sequence evolution in the Arctoidea. Proc Natl Acad Sci USA 90:9557–9561

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledje, C., Arnason, U. Phylogenetic analyses of complete cytochromeb genes of the order Carnivora with particular emphasis on the Caniformia. J Mol Evol 42, 135–144 (1996). https://doi.org/10.1007/BF02198839

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02198839

Key words

Navigation