Skip to main content
Log in

The relevance of residence time theory to pharmacokinetics

  • Special Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Popper KR (1963) Conjectures and refutations. Routledge and Kegan Paul, London

    Google Scholar 

  2. Yamaoka J, Nakagawa T, Uno T (1978) Statistical moments in pharmacokinetics. J Pharmacokinet Biopharm 6: 547–558

    Google Scholar 

  3. Benet LZ, Galeazzi RL (1979) Noncompartmental determination of the steady-state volume of distribution. J Pharm Sci 68: 1071–1074

    Google Scholar 

  4. Dost FH (1958) Über ein einfaches statistisches Dosis-Umsatzgesetz. Klin Wochenschr 36: 655–657

    Google Scholar 

  5. Rescigno A, Segre G (1966) Drug and tracer kinetics. Blaisdell, Waltham, Massachusetts

    Google Scholar 

  6. Shipley RA, Clark RE (1972) Tracer methods for in vivo kinetics. Theory and application. Academic Press, New York

    Google Scholar 

  7. Lassen NA, Perl W (1979) Tracer kinetic methods in medical physiology. Raven Press, New York

    Google Scholar 

  8. Chanter DO (1985) The determination of mean residence time using statistical moments: is it correct? J Pharmacokinet Biopharm 13: 93–100

    Google Scholar 

  9. Banakar UV (1986) A closer look at the mean residence time (MRT) concept based on statistical moments. Drug Dev Ind Pharm 12: 1675–1683

    Google Scholar 

  10. Benet LZ (1985) Mean residence time in the body versus mean residence time in the central compartment. J Pharmacokinet Biopharm 13: 555–558

    Google Scholar 

  11. Landaw EM, Katz D (1985) Comments on mean residence time determination. J Pharmacokinet Biopharm 13: 543–547

    Google Scholar 

  12. Gillespie WR, Veng-Pedersen P (1985) The determination of mean residence time using statistical moments: it is correct. J Pharmacokinet Biopharm 13: 549–554

    Google Scholar 

  13. Brockmeier D (1986) Model-free evaluation and mean-time concept in pharmacokinetics. Meth Find Exp Clin Pharmacol 8: 593–602

    Google Scholar 

  14. Weiss M, Förster W (1979) Pharmacokinetic model based on circulatory transport. Eur J Clin Pharmacol 16: 287–293

    Google Scholar 

  15. Veng-Pedersen P (1988) Linear and nonlinear system approaches in pharmacokinetics: how much do they have to offer? I. General considerations. J Pharmacokinet Biopharm 16: 413–471

    Google Scholar 

  16. Veng-Pedersen P (1989) Mean time parameters in pharmacokinetics: definition, computation and clinical implications (parts I and II). Clin Pharmacokinet 17: 345–366

    Google Scholar 

  17. Weiss M (1986) Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions: I. Log-convex drug disposition curves. J Pharmacokinet Biopharm 14: 635–657

    Google Scholar 

  18. Weiss M (1987) Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions: II. Log-concave concentration-time curves following oral administration. J Pharmacokinet Biopharm 15: 57–74

    Google Scholar 

  19. Weiss M (1985) Theorems on log-convex disposition curves in drug and tracer kinetics. J Theor Biol 116: 355–368

    Google Scholar 

  20. Henthorn TK, Avram MJ, Krejcie TC (1989) Intravascular mixing and drug distribution: the concurrent disposition of thiopental and indocyanine green. Clin Pharmacol Ther 45: 56–65

    Google Scholar 

  21. Perrier D, Mayersohn M (1982) Noncompartmental determination of the steady-state volume of distribution for any mode of administration. J Pharm Sci 71: 372–373

    Google Scholar 

  22. Karol MD (1990) Mean residence time and the meaning of AUMC/AUC. Biopharm Drug Dispos 11: 179–181

    Google Scholar 

  23. Weiss M (1983) Use of gamma distributed residence times in pharmacokinetics. Eur J Clin Pharmacol 25: 695–702

    Google Scholar 

  24. Tucker GT, Jackson PR, Storey GCA, Holt DW (1984) Amiodarone disposition: polyexponentials, power and gamma functions. Eur J Clin Pharmacol 26: 655–656

    Google Scholar 

  25. Kallai-Sanfacon MA, Norwich KH, Steiner G (1978) A new approach to the measurement of glycerol turnover. Can J Physiol Pharmacol 56: 934–939

    Google Scholar 

  26. Sainsbury EJ, Ashley JJ (1986) Curve-fitting in pharmacokinetics – a comparison between gamma and exponential fits. Eur J Clin Pharmacol 30: 243–244

    Google Scholar 

  27. Weiss M (1991) Residence time distributions in pharmacokinetics: behavioral and structural models. In: D'Argenio DZ (ed) Advanced methods of pharmacokinetic and pharmacodynamic systems analysis. Plenum Press, New York, pp 89–101

    Google Scholar 

  28. Piotrovskii VK (1987) Pharmacokinetic stochastic model with Weibull-distributed residence times of drug molecules in the body. Eur J Clin Pharmacol 32: 515–523

    Google Scholar 

  29. Riegelman S, Collier P (1980) The application of statistical moment theory to the evaluation of in vivo dissolution time and absorption time. J Pharmacokinet Biopharm 8: 509–534

    Google Scholar 

  30. Weiss M (1981) Residence time and accumulation of drugs in the body. Int J Clin Pharmacol 19: 123–135

    Google Scholar 

  31. Weiss M (1984) Model-independent assessment of accumulation kinetics based on moments of drug disposition curves. Eur J Clin Pharmacol 27: 355–359

    Google Scholar 

  32. Weiss M (1988) Washout time versus mean residence time. Pharmazie 43: 126–127

    Google Scholar 

  33. Steinijans VW, Diletti E (1983) Statistical analysis of the bioavailability studies: parameterc and nonparametric confidence intervals. Eur J Clin Pharmacol 24:127–136

    Google Scholar 

  34. Weiss M (1990) Recirculatory models: a rigorous basis for a pharmacokinetic theory. In: Breimer DD, Crommelin DJA, Midha J (eds) Topics in Pharmaceutical Sciences, F.I.P., The Hague, pp 415–427

    Google Scholar 

  35. Weiss M (1991) Nonidentity of the steady-state volumes of distribution of the eliminating and noneliminating system. J Pharm Sci 80: 908–910

    Google Scholar 

  36. Weiss M, Pang KS (1990) The dynamics of drug distribution as assessed by the second and third curve moments. Eur J Pharmacol 183: 611–612

    Google Scholar 

  37. Weiss M, Pang KS (1992) Dynamics of drug distribution. I. Role of the second and third curve moment. J Pharmacokinet Biopharm 20: 253–278

    Google Scholar 

  38. Weiss M (1982) Moments of physiological transit time distributions and the time course of drug disposition in the body. J Math Biol 15: 305–318

    Google Scholar 

  39. Weiss M (1983) Hemodynamic influences upon the variance of disposition residence time distribution. J Pharmacokinet Biopharm 11: 63–75

    Google Scholar 

  40. Cutler DJ (1978) Theory of the mean absorption time, an adjunct to conventional bioavailability studies. J Pharm Pharmacol 30: 476–478

    Google Scholar 

  41. Weiss M (1990) Theoretische Pharmakokinetik. Verlag Gesundheit, Berlin

    Google Scholar 

  42. Von Hattingberg HM, Brockmeier D (1979) A method for in vivo-in vitro correlation using the additivity of mean times in biopharmaceutical models. In: Rietbrock N, Woodcock BG, Neuhaus G (eds) Methods in clinical pharmacology. Vieweg, Braunschweig

    Google Scholar 

  43. Tanigawara Y, Yamaoka K, Nakagawa T, Uno T (1982) New method for the evaluation of in vitro dissolution time and disintegration time. Chem Pharm Bull 30: 1088–1090

    Google Scholar 

  44. Graffner C, Nicklasson M, Lindgren J-E (1984) Correlations between in vitro dissolution rate and bioavailability of alaproclate tablets. J Pharmacokinet Biopharm 12: 367–380

    Google Scholar 

  45. Brockmeier D, Dengler HJ, Voegele D (1985) In vitro-in vivo correlation of dissolution, a time scaling problem? Transformation of in vitro results to the in vivo situation, using theophylline as a practical example. Eur J Clin Pharmacol 28: 291–300

    Google Scholar 

  46. Van Rossum JM, Ginneken CAM (1980) Pharmacokinetic system dynamics. In: Gladtke E, Heimann H (eds) Pharmacokinetics. Fischer, Stuttgart

    Google Scholar 

  47. Kubota K, Ishizaki T (1986) A diffusion-diffusion model for percutaneous drug absorption. J Pharmacokinet Biopharm 14: 409–439

    Google Scholar 

  48. Weiss M (1986) Metabolite residence time: influence of the first pass effect. Br J Clin Pharmacol 22: 121–122

    Google Scholar 

  49. Weiss M (1990) Use of metabolite AUC data in bioavailability studies to discriminate between absorption and first-pass extraction. Clin Pharmacokinet 18: 419–422

    Google Scholar 

  50. Weiss M (1988) A general model of metabolite kinetics following intravenous and oral administration of the parent drug. Biopharm Drug Dispos 9: 159–176

    Google Scholar 

  51. Brockmeier D, Ostrowski J (1985) Mean time and first-pass metabolism. Eur J Clin Pharmacol 29: 45–48

    Google Scholar 

  52. Cheng H, Jusko WJ (1990) Mean residence times of multicompartmental drug undergoing reversible metabolism. Pharm Res 7: 103–107

    Google Scholar 

  53. D'Argenio DZ, Katz D (1983) Sampling strategies for noncompartmental estimation of mean residence time. J Pharmacokinet Biopharm 11: 435–446

    Google Scholar 

  54. Nüesch EA (1984) Noncompartmental approach in pharmacokinetics using moments. Drug Metab Rev 15: 103–131

    Google Scholar 

  55. Smith IL, Schentag JJ (1984) Noncompartmental determination of the steady-state volume of distribution during multiple dosing. J Pharm Sci 73: 281–282

    Google Scholar 

  56. Pfeffer M (1984) Estimation of mean residence time from data obtained when multiple-dosing steady state has been reached. J Pharm Sci 73: 854–856

    Google Scholar 

  57. Watari N, Benet LZ (1989) Determination of mean input time, mean residence time, and steady-state volume of distribution with multiple drug inputs. J Pharmacokinet Biopharm 17: 593–599

    Google Scholar 

  58. Voegele D, von Hattingberg H, Brockmeier D (1981) Ein einfaches Verfahren zur Ermittlung von in-vitro/in-vivo Zusammenhängen in der Galenik. Acta Pharm Technol 27: 115–120

    Google Scholar 

  59. Siegel R (1986) The urinary elimination “time lag”: determination of the mean residence time from drug accumulation in the urine during infusion. J Pharm Sci 75: 627–628

    Google Scholar 

  60. Yeh KC, Small RD (1989) Pharmacokinetic evaluation of stable piecewise cubic polynomials as numeric integration functions. J Pharmacokinet Biopharm 17: 721–740

    Google Scholar 

  61. Dunne A, King P (1989) Estimation of noncompartmental parameters: a technical note. J Pharmacokinet Biopharm 17: 131–137

    Google Scholar 

  62. Holford N (1992) MKMODEL: an extended least squares modelling program. Cambridge, England, Biosoft

    Google Scholar 

  63. Wagner JG (1988) Types of mean residence times. Biopharm Drug Dispos 9: 41–57

    Google Scholar 

  64. Chiou WL (1989) The phenomenon and rationale of marked dependence of drug concentration on blood sampling site. Clin Pharmacokinet 17: 175–199

    Google Scholar 

  65. Weiss M (1984) Definition of pharmacokinetic parameters: influence of the sampling site. J Pharmacokinet Biopharm 12: 167–176

    Google Scholar 

  66. Cutler DJ (1987) Definition of mean residence times in pharmacokinetics. Biopharm Drug Dispos 8: 87–97

    Google Scholar 

  67. Nakashima E, Benet LZ (1987) Simulation studies of mean residence time for drugs with peripheral elimination: application to nitroglycerin. J Pharm Sci 76: S106

    Google Scholar 

  68. Nakashima E, Benet LZ (1988) General treatment of mean residence time, clearance and volume parameters in linear mammillary models with elimination from any compartment. J Pharmacokinet Biopharm 16: 475–492

    Google Scholar 

  69. DiStefano III JJ, Landaw EM (1984) Multiexponential, multicompartmental, and noncom partmental modeling: I. Methodological limitations and physiological interpretations. Am J Physiol 246: R651-R664

    Google Scholar 

  70. Vaughan DP, Hope I (1979) Applications of a recirculatory stochastic pharmacokinetic model: limitations of compartmental models. J Pharmacokinet Biopharm 7: 207–225

    Google Scholar 

  71. Weiss M (1991) Potential errors in conventional single-dose pharmacokinetic studies. Naunyn-Schmiedeberg's Arch Pharmacol 343: R4

    Google Scholar 

  72. Rescigno A, Beck JS (1987) The use and abuse of models. J Pharmacokinet Biopharm 15: 327–340

    Google Scholar 

  73. Karlin S, Taylor MM (1975) A first course in stochastic processes. Academic Press, New York

    Google Scholar 

  74. Barlow RE, Proschan F (1975) Statistical theory of reliability and life testing. Holt, Rinehart and Winston, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, M. The relevance of residence time theory to pharmacokinetics. Eur J Clin Pharmacol 43, 571–579 (1992). https://doi.org/10.1007/BF02284953

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02284953

Key words

Navigation