Skip to main content
Log in

Caenorhabditis Globin genes: Rapid intronic divergence contrasts with conservation of silent exonic sites

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Globin genes from theCaenorhabditis speciesbriggsae andremanei were identified and compared with a previously describedC. elegans globin gene. The encoded globins share between 86% and 93% amino acid identity, with most of the changes in or just before the putative B helix.C. remanei was found to have two globin alleles,Crg1-1 andCrgl-2. The coding sequence for each is interrupted by a single intron in the same position. The exons of the two genes are only 1 % divergent at the nucleotide level and encode identical polypeptides. In contrast, intron sequence divergence is 16% and numerous insertions and deletions have significantly altered the size and content of both introns. Genetic crosses show thatCrg1-1 andCrgl-2 segregate as alleles. Homozygous lines for each allele were constructed and northern analysis confirmed the expression of both alleles. These data reveal an unusual situation wherein two alleles encoding identical proteins have diverged much more rapidly in their introns than the silent sites of their coding sequences, suggesting multiple gene conversion events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell. Garland, New York, NY

    Google Scholar 

  • Arnott S, Chandrasekaran R, Birdsall DL, Leslie AGW, Ratliff RL (1980) Left-handed DNA helices. Nature 283:743–745

    Article  CAS  PubMed  Google Scholar 

  • Arutyunyan EG (1981) The structure of leghemoglobin. Mol Biol 15: 27–44

    CAS  Google Scholar 

  • Bashford D, Chothia C, Lesk AM (1987) Determinants of a protein fold: unique features of the globin amino acid sequences. J Mol Biol 196:199–216

    Article  CAS  PubMed  Google Scholar 

  • Blaxter ML (1993) Nemoglobins: divergent nematode globins. Parasitol Today 9:353–360

    Article  CAS  PubMed  Google Scholar 

  • Blaxter ML, Vanfleteren JR, Xia J, Moens L (1994) Structural characterization of anAscaris myoglobin. J Biol Chem 269:30181–30186

    CAS  PubMed  Google Scholar 

  • Brown GG, Lee JS, Brisson N, Verma DPS (1984) The evolution of a plant globin gene family. J Mol Evol 21:19–32

    Article  CAS  PubMed  Google Scholar 

  • Davenport H (1949) The haemoglobins of Ascaris lumbricoides. Proc R Soc Load Biol 136:255–270

    Google Scholar 

  • De Baere I, Liu L, Moens L, Van Beeumen J, Gielens C, Richelle J, Trotman C, Finch J, Gerstein M, Perutz M (1992) Polar zipper sequence in the high-affinity hemoglobin of Ascaris suum: amino acid sequence and structural interpretation. Proc Natl Acad Sci USA 89:4638–4642

    PubMed  Google Scholar 

  • De Baere I, Perutz MF, Kiger L, Marden MC, Poyart C (1994) Formation of two hydrogen bonds from the globin to the heme-linked oxygen molecule in Ascaris hemoglobin. Proc Natl Acad Sci USA 91:1594–1597

    PubMed  Google Scholar 

  • Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution, and pathology. Benjamin Cummings, Menlo Park, CA

    Google Scholar 

  • Dixon B, Pohajdak B (1992) Did the ancestral globin gene of plants and animals contain only two introns? Trends Biochem Sci 17:486–488

    Article  CAS  PubMed  Google Scholar 

  • Dixon B, Walker B, Kimmins W, Pohajdak B (1992) A nematode hemoglobin gene contains an intron previously thought to be unique to plants. J Mol Evol 35:131–136

    Article  CAS  PubMed  Google Scholar 

  • Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O'Connell C, Spritz RA, DeRiel JK, Forget BG, Weissman SM, Slightom JL, Blechl AE, Smithies O, Baralle FE, Shoulders CC, Proudfoot NJ (1980) The structure and evolution of the human β-globin gene family. Cell 21:653–668

    Article  CAS  PubMed  Google Scholar 

  • Fields C (1990) Information content of Caenorhabditis elegans splice site sequences varies with intron length. Nucleic Acids Res 18: 1509–1512

    CAS  PubMed  Google Scholar 

  • Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85: 8998–8992

    CAS  PubMed  Google Scholar 

  • Gibson Q, Smith M (1965) Rates of reaction of Ascaris haemoglobins with ligands. Proc R Soc Lond [Biol] 163:206–214

    CAS  Google Scholar 

  • Go M (1981) Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature 291:90–92

    CAS  PubMed  Google Scholar 

  • Goetinck S, Waterston RH (1994) TheCaenorhabditis elegans muscle-affecting gene unc-87 encodes a novel thin filament-associated protein. J Cell Biol 127:79–93

    CAS  PubMed  Google Scholar 

  • Heine U, Blumenthal T (1986) Characterization of regions of theCaenorhabditis elegans X chromosome containing vitellogenin genes. J Mol Biol 188:301–312

    Article  CAS  PubMed  Google Scholar 

  • Heschl MFP, Baillie DL (1990) Functional elements and domains inferred from sequence comparisons of a heat shock gene in two nematodes. J Mol Evol 31:3–9

    Article  CAS  PubMed  Google Scholar 

  • Hill A, Hardies SC, Phillips SJ, Davies MG, Hutchison CA, Edgell MH (1984) The mouse early embryonic β-globin gene sequences. J Biol Chem 259:3739–3747

    CAS  PubMed  Google Scholar 

  • Jensen EO, Paludan K, Hyldig-Nielsen JJ, Jorgensen P, Marcker KA (1981) The structure of a chromosomal leghaemaglobin gene from soybean. Nature 291:677–679

    Article  Google Scholar 

  • Kennedy BP, Aamodt EJ, Allen FL, Chung MA, Heschl MFP, McGhee JD (1993) The gut esterase gene (gas-1) from the nematodesCaenorhabditis elegans andCaenorhabditis briggsae. J Mol Biol 229: 890–908

    Article  CAS  PubMed  Google Scholar 

  • Kloek AP, Sherman DR, Goldberg DE (1993) Novel gene structure and evolutionary context ofCaenorhabditis elegans globin. Gene 129: 215–221

    Article  CAS  PubMed  Google Scholar 

  • Kloek AP, Yang J, Mathews FS, Frieden C, Goldberg DE (1994) The tyrosine B10 hydroxyl is crucial for oxygen avidity ofAscaris hemoglobin. J Biol Chem 269:2377–2379

    CAS  PubMed  Google Scholar 

  • Koop BF, Miyamoto MM, Embury JE, Goodman M, Czelusniak J, Slightom JL (1986) Nucleotide sequence and evolution of the orangutan e globin gene region and surrounding alu repeats. J Mol Evol 24:94–102

    Article  CAS  PubMed  Google Scholar 

  • Li WH, Gojobori T (1983) Rapid evolution of goat and sheep globin genes following gene duplication. Mol Biol Evol 1:94–108

    CAS  PubMed  Google Scholar 

  • Mansell JB, Timms K, Tate WP, Moens L, Trotman CNA (1993) Expression of a globin gene inCaenorhabditis elegans. Biochem Mol Biol Int 30:643–647

    CAS  PubMed  Google Scholar 

  • Marks J, Shaw JP, Shen C-KJ (1986) The orangutan adult α-globin gene locus: duplicated functional genes and a newly detected member of the primate u-globin gene family. Proc Natl Acad Sci USA 83:1413–1417

    CAS  PubMed  Google Scholar 

  • Mellor AL, Weiss EH, Ramachandran K, Flavell RA (1983) A potential donor gene for thebm1 gene conversion event in the C57BL mouse. Nature 306:792–795

    Article  CAS  PubMed  Google Scholar 

  • Moens L, Vanfleteren J, De Baere I, Jellie AM, Tate W, Trotman CNA (1992) Unexpected intron location in non-vertebrate globin genes. FEBS Lett 312:105–109

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Wittenberg JB (1965) The hemoglobin of Ascaris perienteric fluid: equilibria with oxygen and carbon monoxide. Biochim Biophys Acta 3:503–511

    Google Scholar 

  • Powers PA, Smithies O (1986) Short gene conversions in the human fetal globin gene region: a by-product of chromosome pairing during meiosis? Genetics 112:343–358

    CAS  PubMed  Google Scholar 

  • Prasad SS, Baillie DL (1989) Evolutionarily conserved coding sequences in the dpy-20-unc-22 region of theCaenorhabditis elegans. Genomics 5:185–198

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, ch 7

    Google Scholar 

  • Shen S, Slightom JL, Smithies O (1981) A history of human fetal globin gene duplication. Cell 26:191–203

    Article  CAS  PubMed  Google Scholar 

  • Sherman DR, Kloek AP, Krishnan R, Guinn B, Goldberg DE (1992)Ascaris hemoglobin gene: plant-like structure reflects the ancestral globin gene. Proc Natl Acad Sci USA 89:11696–11700

    CAS  PubMed  Google Scholar 

  • Slightom JL, Blechl AE, Smithies O (1980) Human fetal Gγ- and Aγ-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21: 627–638

    Article  CAS  PubMed  Google Scholar 

  • Slightom JL, Chang L-YE, Koop BF, Goodman M (1985) Chimpanzee fetal Gγ- and Aγ-globin gene nucleotide sequences provide further evidence of gene conversions in hominine evolution. Mol Biol Evol 2:370–389

    CAS  PubMed  Google Scholar 

  • Slightom JL, Theisen TW, Koop BF, Goodman M (1987) Orangutan fetal globin genes. J Biol Chem 262:7472–7483

    CAS  PubMed  Google Scholar 

  • Smithies O, Powers PA (1986) Gene conversions and their relation to homologous chromosome pairing. Philos Trans R Soc Land Biol 312:291–302

    CAS  Google Scholar 

  • Stoltzfus A, Doolittle WF (1993) Slippery introns and globin gene evolution. Curr Biol 3:215–217

    Article  CAS  PubMed  Google Scholar 

  • Stoltzfus A, Spencer DF, Zuker M, Logsdon JM, Doolittle WF (1994) Testing the theory of genes: the evidence from protein structure. Science 265:202–207

    CAS  PubMed  Google Scholar 

  • Sulston J, Du Z, Thomas K, Wilson R, Hillier L, Staden R, Halloran N, Green P, Thierry-Mug J, Qiu L, Dear S, Coulson A, Craxton M, Durbin R, Berks M, Metzstein M, Ainscough R, Waterston R (1992) TheC. elegans genome sequencing project: a beginning. Nature 356:37–41

    Article  PubMed  Google Scholar 

  • Thomas WK, Wilson AC (1991) Mode and tempo of molecular evolution in the nematodeCaenorhabditis: cytochrome oxidase 11 and calmodulin sequences. Genetics 128:269–279

    CAS  PubMed  Google Scholar 

  • Wang AHJ, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, Rich A (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282: 680–686

    Article  CAS  PubMed  Google Scholar 

  • Wang AHJ, Quigley GJ, Kolpak FJ, van der Marel G, van Boom JH, Rich A (1981) Left-handed double helical DNA: variations in the backbone conformation. Science 211:171–176

    CAS  PubMed  Google Scholar 

  • Williams BD, Schrank B, Huynh C, Shownkeen R, Waterston RH (1992) A genetic mapping system inCaenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131:609–624

    CAS  PubMed  Google Scholar 

  • Yamauchi K, Ochiai T, Usuki I (1992) The unique structure of theParamecium caudatum hemoglobin gene: the presence of one intron in the middle of the coding region. Biochim Biophys Acta 1171:81–87

    CAS  PubMed  Google Scholar 

  • Yang J, Kloek AP, Goldberg DE, Mathews FS (1995) The structure ofAscaris hemoglobin domain I at 2.2A resolution: molecular features of oxygen avidity. Proc Natl Acad Sci USA 92:4224–4228

    CAS  PubMed  Google Scholar 

  • Zucker-Aprison E, Blumenthal T (1989) Potential regulatory elements of nematode vitellogenin genes revealed by interspecies sequence comparison. Mol Evol 28:487–496

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: D. Goldberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kloek, A.P., McCarter, J.P., Setterquist, R.A. et al. Caenorhabditis Globin genes: Rapid intronic divergence contrasts with conservation of silent exonic sites. J Mol Evol 43, 101–108 (1996). https://doi.org/10.1007/BF02337354

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02337354

Key words

Navigation