Skip to main content
Log in

Molecular evidence for Acanthocephala as a subtaxon of Rotifera

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Rotifers are free-living animals usually smaller than 1 mm that possess a characteristic wheel organ. Acanthocephalans (thorny-headed worms) are larger endoparasitic animals that use vertebrates and arthropods to complete their life cycle. The taxa Acanthocephala and Rotifera are considered separate phyla, often within the taxon Aschelminthes. We have reexamined the relationship between Rotifera and Acanthocephala using 18S rRNA gene sequences. Our results conclusively show that Acanthocephala is the sister group of the rotifer class Bdelloidea. Rotifera was nonmonophyletic in all molecular analyses, which supports the hypothesis that the Acanthocephala represent a taxon within the phylum Rotifera and not a separate phylum. These results agree with a previous cladistic study of morphological characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brooks DR, McClennan DA (1993) Parascript. Smithsonian Press, Washington, pp 121–122

    Google Scholar 

  • Brusca RC, Brusca GJ (1990) Invertebrates. Sinauer, Sunderland, MA

    Google Scholar 

  • Bullock WL (1969) Morphological features as tools and pitfalls in acanthocephalan systematics. In: Schmidt GD (ed) Problems in systematics of parasites. University Park Press, Baltimore, pp 9–45

    Google Scholar 

  • Clark RB (1979) Radiation of the Metazoa. In: House MR (ed) The origins of major invertebrate groups. Academic Press, New York, pp 55–101

    Google Scholar 

  • Clément P (1993) The phylogeny of rotifers: molecular, ultrastructural and behavioural data. Hydrobiologia 255/256:527–544

    Article  Google Scholar 

  • Conway Morris S, Crompton DWT (1982) The origins and evolution of the acanthocephala. Biol Rev 57:85–115

    Google Scholar 

  • De Rijk P, De Wachter R (1993) DCSE, an interactive tool for sequence alignment and secondary structure research. Comput Appl Biosci 9:735–740

    PubMed  Google Scholar 

  • Donoghue MJ, Olmstead RG, Smith JF, Palmer JD (1992) Phylogenetic relationships of Dipsacales on RbcL sequences. Ann MO Bot Gard 79:333–345

    Google Scholar 

  • Dunagan TT, Miller DM (1991) Acanthocephala. In: Harrison FW, Rupert EE (eds) Microscopic anatomy of invertebrates, vol. 4: Aschelminthes. Wiley-Liss, New York, pp 299–332

    Google Scholar 

  • Felsenstein J (1993) PHYLIP—Phylogeny Inference Package, version 3.5. University of Washington, Seattle

    Google Scholar 

  • Hafner K (1950) Organisation und systematische Stellung der Acanthocephalan. Verh Dtsch Zool Ges 145:245–274

    Google Scholar 

  • Hempstead PG, Regular SC, Ball IR (1990) A method for the preparation of high-molecular-weight DNA from marine and freshwater triclads. DNA Cell Biol 9:57

    CAS  PubMed  Google Scholar 

  • Hillis DM, Huelsenbeck JP (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J Hered 83:189–195

    CAS  PubMed  Google Scholar 

  • Hillis DM, Huelsenbeck JP, Cunningham CW (1994) Application and accuracy of molecular phylogenies. Science 264:671–677

    CAS  PubMed  Google Scholar 

  • Hyman LB (1951) The invertebrates, vol. III: pseudocoelomate groups. McGraw-Hill, New York

    Google Scholar 

  • Kumar S (1995) PHYLTEST: PHYLogenetic hypothesis TESTing by using minimum evolution criterion. Institute of Molecular Evolutionary Genetics and Department of Biology, The Pennsylvania State University, University Park, PA

    Google Scholar 

  • Kumar S, Tamura K, Nei M (1994) MEGA: molecular evolutionary genetics analysis software for microcomputers. Comput Appl Biosci 10:189–191

    CAS  PubMed  Google Scholar 

  • Lockhart PJ, Penny D, Hendy MD, Howe CJ, Beanland TJ, Larkum AWD (1992) Controversy on chloroplast origins. FEBS Lett 301: 127–131

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen S (1985) Phylogenetic aspects of pseudocoelomate evolution. In: Conway Morris S, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. Clarendon Press, Oxford, pp 210–223

    Google Scholar 

  • Malakhov VV (1994) Classification of the Pseudocoelomates. In: Hope WD (ed) Nematodes, structure, development, classification and phylogeny. Smithsonian Institute Press, Washington, pp 175–201

    Google Scholar 

  • Marcus E (1958) On the evolution of the animal phyla. Quart Rev Biol 33:24–58

    Article  Google Scholar 

  • Markevich GI (1993) Phylogenetic relationships of Rotifera to other veriform taxa. Hydrobiologia 255/256:521–526

    Google Scholar 

  • Melone G, Ferraguti M (1994) The spermatozoa ofBrachionus plicafilis (Rotifera, Monogononta) with some notes on sperm ultrastructure in Rotifera. Acta Zool 75:81–88

    Google Scholar 

  • Neuhaus B (1994) Ultrastructure of alimentary canal and body cavity, ground pattern, and phylogenetic relationships of the Kinorhyncha. Microfauna Marina 9:61–156

    Google Scholar 

  • Nielsen C (1995) Animal evolution. Oxford University Press, Oxford

    Google Scholar 

  • Raff R, Marshall CR, Turbeville JM (1994) Using DNA sequences to unravel the Cambrian radiation of the animal phyla. Annu Rev Ecol Syst 25:351–375

    Article  Google Scholar 

  • Remane A (1963) The systematic position and phylogeny of the pseudocoelomates. In: Dougherty EC (ed) The lower Metazoa. University of California Press, Berkeley, pp 247–255

    Google Scholar 

  • Rieger RM, Tyler S (1995) Sister-group relationship of Gnathostomulida and Rotifera-Acanthocephala. Invert Biol 114:186–188

    Google Scholar 

  • Ruppert EE (1991) Introduction to the aschelminth phyla: a consideration of mesoderm, body cavities, and cuticle. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4: Aschelminthes. Wiley-Liss, New York, pp 1–17

    Google Scholar 

  • Ruppert EE, Barnes RD (1994) Invertebrate zoology. Saunders, New York

    Google Scholar 

  • Rzhetsky A, Kumar S, Nei M (1995) Four-cluster analysis: a simple method to test phylogenetic hypothesis. Mol Biol Evol 12:163–167

    CAS  PubMed  Google Scholar 

  • Steel MA, Lockhart PJ, Penny D (1993) Confidence in evolutionary trees from biological sequence data. Nature 364:440–442

    Article  CAS  PubMed  Google Scholar 

  • Swofford D (1993) PAUP: phylogenetic analysis using parsimony, version 3.1.1. Illinois Natural History Survey, Champaign, IL

    Google Scholar 

  • Telford MJ, Holland PWH (1993) The phylogenetic affinities of the Chaetognaths: a molecular analysis. Mol Biol Evol 10:660–676

    CAS  PubMed  Google Scholar 

  • Templeton AR (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37:221–244

    CAS  Google Scholar 

  • VanCleave HJ (1941) Relationships of the Acanthocephala. Am Nat 75:31–47

    Google Scholar 

  • Van de Peer Y, Van den Broeck I, De Rijk R, De Wachter R (1994) Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 22:3488–3494

    PubMed  Google Scholar 

  • Winnepenninckx B, Backeljau T, Mackey LY, Brooks JM, De Wachter R, Kumar S, Garey JR (1995) 18S rRNA data indicate that the aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Mol Biol Evol 12:1132–1137

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: J.R. Garey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garey, J.R., Near, T.J., Nonnemacher, M.R. et al. Molecular evidence for Acanthocephala as a subtaxon of Rotifera. J Mol Evol 43, 287–292 (1996). https://doi.org/10.1007/BF02338837

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02338837

Key words

Navigation