Skip to main content
Log in

Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

A new method is presented for inferring evolutionary trees using nucleotide sequence data. The birth-death process is used as a model of speciation and extinction to specify the prior distribution of phylogenies and branching times. Nucleotide substitution is modeled by a continuous-time Markov process. Parameters of the branching model and the substitution model are estimated by maximum likelihood. The posterior probabilities of different phylogenies are calculated and the phylogeny with the highest posterior probability is chosen as the best estimate of the evolutionary relationship among species. We refer to this as the maximum posterior probability (MAP) tree. The posterior probability provides a natural measure of the reliability of the estimated phylogeny. Two example data sets are analyzed to infer the phylogenetic relationship of human, chimpanzee, gorilla, and orangutan. The best trees estimated by the new method are the same as those from the maximum likelihood analysis of separate topologies, but the posterior probabilities are quite different from the bootstrap proportions. The results of the method are found to be insensitive to changes in the rate parameter of the branching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger JO (1985) Statistical decision theory and Bayesian analysis. Springer-Verlag, New York

    Google Scholar 

  • Bishop MJ, Friday AE (1985) Evolutionary trees from nucleic acid and protein sequences. Proc R Soc Lond [Biol] 226:271–302

    CAS  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Google Scholar 

  • Edwards AWF (1970) Estimation of the branch points of a branching diffusion process (with discussion). J R Stat Soc B 32:155–174

    Google Scholar 

  • Feller W (1939) Die grundlagen der volterraschen theorie des kampfer ums dasein in wahrsheinlichkeits theoretischen behandlung. Acta Biotheor 5:1–40

    Article  Google Scholar 

  • Felsenstein J (1973) Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool 22:240–249

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J, Kishino H (1993) Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull. Syst Biol 42:193–200

    Google Scholar 

  • Fukami-Kobayashi K, Tateno Y (1991) Robustness of maximum likelihood tree estimation against different patterns of base substitution. J Mol Evol 32:79–91

    Article  CAS  PubMed  Google Scholar 

  • Gaut BS, Lewis PO (1995) Success of maximum likelihood phylogeny inference in the four-taxon case. Mol Biol Evol 12:152–162

    CAS  PubMed  Google Scholar 

  • Goldman N (1990) Maximum likelihood inference of phylogenetic trees, with special reference to a Poisson process model of DNA substitution and to parsimony analysis. Syst Zool 39:345–361

    Google Scholar 

  • Grimmett GR, Stirzaker DR (1992) Probability and Random Processes. 2nd ed. Clarendon Press, Oxford

    Google Scholar 

  • Hasegawa M, Yano T (1984) Maximum likelihood method of phylogenetic inference from DNA sequence data. Bull Biomet Soc Jpn 5:1–7

    Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22: 160–174

    CAS  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Saitou N (1991) On the maximum likelihood method in molecular phylogenetics. J Mol Evol 32:443–445

    CAS  PubMed  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing the confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Horai S, Satta Y, Hayasaka K, Kondo R, Inoue T, Ishida T, Hayashi S, Takahata N (1992) Man's place in Hominoidea revealed by mitochondrial DNA genealogy. J Mol Evol 35:32–43

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP (1995a) The performance of phylogenetic methods in simulation. Syst Biol 44:17–48

    Google Scholar 

  • Huelsenbeck JP (1995b) The robustness of two phylogenetic methods: four-taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining. Mol Biol Evol 12:843–849

    CAS  Google Scholar 

  • Kendall DG (1949) Stochastic processes and population growth. J R Star Soc B 11:230–264

    Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  CAS  PubMed  Google Scholar 

  • Kuhner MK, Felsenstein J (1994) A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol 11:459–468

    CAS  PubMed  Google Scholar 

  • Kuhner MK, Yamato J, Felsenstein J (1995) Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. Genetics 140:1421–1430

    CAS  PubMed  Google Scholar 

  • Miyamoto MM, Slighton JL, Goodman M (1987) Phylogenetic relations of humans and African apes from DNA sequences in the ψη-globin region. Science 238:369–373

    CAS  PubMed  Google Scholar 

  • Nee S, May RM, Harvey PH (1994) The reconstructed evolutionary process. Philos Trans R Soc Lond Biol 344:305–311

    CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing. 2nd ed. Cambridge University Press, Cambridge

    Google Scholar 

  • Raup DM (1985) Mathematical models of cladogenesis. Paleobiology 11:42–52

    Google Scholar 

  • Robert CP (1994) The Bayesian choice: a decision-theoretic motivation. Springer-Verlag, New York

    Google Scholar 

  • Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12:823–833

    CAS  PubMed  Google Scholar 

  • Tateno Y, Takezaki N, Nei M (1994) Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site. Mol Biol Evol 11:261–277

    CAS  PubMed  Google Scholar 

  • Thompson EA (1975) Human evolutionary trees. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Thorne JL, Kishino H, Felsenstein J (1992) Inching toward reliability: an improved likelihood model of sequence evolution. J Mol Evol 34:3–16

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (1993) Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol 10:1396–1401

    CAS  PubMed  Google Scholar 

  • Yang Z (1994a) Statistical properties of the maximum likelihood method of phylogenetic estimation and comparison with distance matrix methods. Syst Biol 43:329–342

    Google Scholar 

  • Yang Z (1994b) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314

    CAS  Google Scholar 

  • Yang Z (1995) Evaluation of several methods for estimating phylogenetic trees when substitution rates differ over nucleotide sites. J Mol Evol 40:689–697

    Article  CAS  Google Scholar 

  • Yang Z (1996) Phylogenetic analysis by parsimony and likelihood methods. J Mol Evol 42:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Goldman N, Friday AE (1995) Maximum likelihood trees from DNA sequences: a peculiar statistical estimation problem. Syst Biol 44:384–399

    Google Scholar 

  • Yule GU (1925) A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, F.R.S. Philos Trans R Soc Lond Biol 213:21–87

    Google Scholar 

  • Zharkikh A, Li W-H (1992) Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences: 1. four taxa with a molecular clock. Mol Biol Evol 9:1119–1147

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: Z. Yang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rannala, B., Yang, Z. Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. J Mol Evol 43, 304–311 (1996). https://doi.org/10.1007/BF02338839

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02338839

Key words

Navigation