Skip to main content
Log in

Endo-xyloglucan transferase, a new class of transferase involved in cell wall construction

  • Invited Article
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Cell shape in plants is constrained by cell walls, which are thick yet dynamic structures composed of crystalline cellulose microfibrils and matrix polymers. Xyloglucans are the principal component of the matrix polymers and bind tightly to the surface of cellulose microfibrils and thereby cross-link them to form an interwoven xyloglucan-cellulose network structure. Thus, cleavage and reconnection of the cross-links between xyloglucan molecules are required for the rearrangement of the cell wall architecture, the process essential for both cell wall expansion and the wall deposition occurring during cell growth and differentiation. Endoxyloglucan transferase (EXT) is a newly identified class of transferase that catalyzes molecular grafting between xyloglucan molecules. This enzyme catalyzes both endo-type splitting of a xyloglucan molecule and reconnection of a newly generated reducing terminus of the xyloglucan to the non-reducing terminus of another xyloglucan molecule, thereby mediating molecular grafting between xyloglucan cross-links in plant cell walls. Molecular cloning and sequencing of EXT-cDNAs derived from five different plant species includingA. thaliana andV. angularis has revealed that the amino acid sequence of the mature protein is extensively conserved in the five different plant species, indicating that EXT protein is ubiquitous among higher plants. This structural study has also disclosed the presence of a group of xyloglucan related proteins (XRPs) with transferase activity in higher plants. Current data strongly suggest that these proteins are involved in a wide spectrum of physiological activities including cell wall expansion and deposition in growing cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EXT:

endo-xyloglucan transferase

GPC:

gel permeation chromatography

XRP:

xyloglucan related protein

XET:

xyloglucan endotransglycosylase

References

  • Albersheim, P. 1976. The primary cell wall.In J. Bonner and J.E. Varner, eds., Plant Biochemistry, Academic Press, New York, pp. 225–274.

    Google Scholar 

  • Arrowsmith, D. and de Silva, J. 1994. Molecular cloning of cDNAs encoding enzymes with xyloglucan endo transglycosylase (XET) activity from ripening tomato fruit. Abstract of 4th International Congress of Plant Molecular Biology. Abstract No. 537. Amsterdam.

  • Bauer, W.D., Talmadge, K.W., Keegstra, K. andAlbersheim, P. 1973. The structure plant cell walls II. The hemicellulose of suspension cultured sycamore cells. Plant Physiol.51: 174–187.

    CAS  Google Scholar 

  • Borriss, R., Buettner, K. andMaentsaelae, P. 1990. Structure of the beta-1, 3-1, 4-glucanase gene ofBacillus macerans: Homologies to other betaglucanases. Mol. Gen. Genet.222: 278–283.

    Article  CAS  PubMed  Google Scholar 

  • Carpita N.C. 1984. Cell wall development in maize coleoptiles. Plant Physiol.76: 202–212.

    Google Scholar 

  • Carpita, N.C. andGibeaut, D.M. 1993. Structural models of primary cell walls in flowering plants. Plant J.3: 1–30.

    Article  CAS  PubMed  Google Scholar 

  • Cleland, R. 1971. Cell wall extension. Ann. Rev. Plant Physiol.22: 197–222.

    CAS  Google Scholar 

  • Cleland, R.E. 1989. The mechanism of wall loosening and wall extension,In, D.J. Cosgrove and D.P. Knievel, eds., Physiology of Cell Expansion During Plant Growth, The American Society of Plant Physiologist, Rockville, pp. 18–27.

    Google Scholar 

  • Cleland, R.E. andHaughton P.M. 1971. The effect of auxin on relaxation in isolatedAvena coleoptiles. Plant Physiol.47: 812–815.

    CAS  Google Scholar 

  • Cosgrove, D.J. 1985. Cell wall yield properties of growing tissue. Plant Physiol.78: 347–356.

    Google Scholar 

  • Cosgrove, D.J. 1987. Wall relaxation in growing in growing stems: comparison of four species and assessment of measurement techniques. Planta171: 266–278.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D.J. 1989. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta177: 121–130.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D.J. 1993a. How do plant cell walls extend? Plant Physiol.102: 1–6.

    CAS  PubMed  Google Scholar 

  • Cosgrove, D.J. 1993b. Water uptake by growing cells. Int. J. Plant Sci.154: 10–21.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D.J. 1993c. Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol.124: 1–23.

    CAS  PubMed  Google Scholar 

  • Darvill, J.E., McNeil, M., Darvill, A.G. andAlbersheim, P. 1980. Structure of plant cell walls. XI. Glucuronoarabinoxylan, a second hemicellulose in the primary walls of suspension-cultured sycamore cells. Plant Physiol.66: 1135–1139.

    CAS  Google Scholar 

  • Delmer, D.P. 1987. Cellulose biosynthesis. Annu. Rev. Plant Physiol.38: 259–290.

    CAS  Google Scholar 

  • de Silva, J., Arrowsmith, D., Hellyer, A., Whiteman, S. andRobinson, S. 1994. Xyloglucan endotransglycosylase and plant growth. J. Exp. Bot.45: Special lssue 1693–1701.

    Google Scholar 

  • de Silva, J., Jarman, C.D., Arrowsmith, D.A., Stronach, M.S., Chengappa, S., Sidebottom, C. andReid, J.S.G. 1993. Molecular characterization of a xyloglucan-specific endo-(1-4)-β-D-glucanase (xyloglucan endo-transglycosylase) from nasturtium seeds. Plant J.3: 701–711.

    Article  PubMed  Google Scholar 

  • Edwards, M., Dea, I.C.M., Bulpin, P.V. andReid, J.S.G. 1986. Purification and properties of a novel xyloglucan-specific endo-(1-4)-β-D-glucanase from germinated nasturtium seeds (Tropaeolum majus L.), J. Biol. Chem.261: 9489–9494.

    CAS  PubMed  Google Scholar 

  • English, P.D., Maglothin, A., Keegstra, K. andAlbersheim, P. 1972. A cell-wall degrading endopolygalacturonase secreted byColletotichum lindemuthianum. Plant Physiol.49: 293–297.

    CAS  Google Scholar 

  • Fanutti, C., Gidley, M.J. andReid, J.S.G. 1993. Action of a pure xyloglucan endo-transglycosylase (formerly called xyloglucan-specific endo-(1–4)-β-D-glucanase) from the cotyledons of germinated nasturtium seeds. Plant J.3: 691–700.

    CAS  PubMed  Google Scholar 

  • Farkas, V., Sulova, Z., Stratilova, E., Hanna, R. andMaclachlan, G. 1992. Cleavage of xyloglucan by nasturtium seed xyloglucanase and transglycosylation to xyloglucan subunit oligosaccharides. Arch. Biochem. Biophys.298: 365–370.

    Article  CAS  PubMed  Google Scholar 

  • Fry, S.C. 1989. Cellulose, hemicelluloses and auxinstimulated growth: a possible relationship. Physiol. Plant.75: 532–536.

    CAS  Google Scholar 

  • Fry, S.C., Smith, R.C., Renwick, K.F., Martin, D.J., Hodge, S.K. andMatthews, J.M. 1992. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem. J.282: 821–828.

    CAS  PubMed  Google Scholar 

  • Hayashi, T. 1989. Xyloglucans in the primary cell wall. Annu. Rev. Plant Physiol. Mol. Biol.40: 139–168.

    Article  CAS  Google Scholar 

  • Hayashi, T. andMatsuda, K. 1981. Biosynthesis of xyloglucan in suspension cultured soybean cells: occurrence and some properties of xyloglucan 4-β-D-glucosyltransferase and 6-α-D-xylosyltransferase. J. Biol. Chem.256: 11117–11122.

    CAS  PubMed  Google Scholar 

  • Hoson, T. 1993. Regulation of polysaccharide breakdown during auxin-induced cell wall loosening. Plant Res.106: 369–381.

    CAS  Google Scholar 

  • Hoson, T. andMasuda, Y. 1987. Effect of lectins on auxin-induced elongation and wall loosening in oat coleoptile and azuki bean epicotyl segments. Physiol. Plant.71: 1–8.

    CAS  Google Scholar 

  • Hoson, T. andMasuda, Y. 1991. Inhibition of auxin-induced elongation and xyloglucan breakdown in azuki bean epicotyl segments by fucose-binding lectins. Physiol. Plant.82: 41–47.

    Article  CAS  Google Scholar 

  • Hoson, T. andMasuda, Y. 1992. Relationship between polysaccharide synthesis and cell wall loosening in auxin-induced elongation of rice coleoptile segments. Plant Science83: 149–154.

    Article  CAS  Google Scholar 

  • Hoson, T. andNevins, D.J. 1989. β-Glucan antibodies inhibit auxin-induced cell elongation and changes in the wall of Zea coleoptile segments. Plant Physiol.90: 1353–1358.

    CAS  Google Scholar 

  • Hoson, T., Sone, Y., Misaki, A. andMasuda, Y. 1993. Role of xyloglucan breakdown in epidermal cell walls for auxin-induced elongation of azuki bean epicotyl segments. Physiol. Plant.87: 142–147.

    Article  CAS  Google Scholar 

  • Inouhe, M. andYamamoto, R. 1991. Effects of 2-deoxygalactose on auxin-induced growth and levels of UDP-sugars in higher plants. Plant Cell Physiol.32: 433–438.

    CAS  Google Scholar 

  • Inouhe, M., Yamamoto, R. andMasuda, Y. 1984. Auxininduced changes in the molecular weight distribution of cell wall xyloglucans inAvena coleoptiles. Plant Cell Physiol.25: 1341–1351.

    CAS  Google Scholar 

  • Inouhe, M., Yamamoto, R. andMasuda, Y. 1986. Inhibition of IAA-induced cell longation inAvena coleoptile segments by galactose: its effect of UDP-glucose formation. Physiol. Plant.66: 370–376.

    CAS  Google Scholar 

  • Inouhe, M., Yamamoto, R. andMasuda, Y. 1987. UDP-Glucose level as a limiting factor for IAA-induced cell elongation inAvena coleoptile segments. Physiol. Plant.69: 49–54.

    CAS  Google Scholar 

  • Jacobs, M. andRay, P.M. 1975. Promotion of xyloglucan metabolism by acid pH. Plant Physiol.56: 373–376.

    CAS  Google Scholar 

  • Kato, Y. andMatsuda, K. 1976. Presence of a xyloglucan in the cell wall ofPhaseolus aureus hypocotyls. Plant Cell Physiol.17: 1185–1198.

    CAS  Google Scholar 

  • Keegstra, K., Talmadge, K.W., Bauer, W.D. andAlbersheim, P. 1973. Structure of plant cell walls. III A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol.51: 188–197.

    CAS  Google Scholar 

  • Koyama, T., Hayashi, T., Kato, Y. andMatsuda, K. 1981. Occurrence of xyloglucan-degrading, enzymes in soybean cell wall. Plant Cell Physiol.22: 1191–1198.

    CAS  Google Scholar 

  • Labavitch, J.M. andRay, P.M. 1974. Turnover of cell wall polysaccharides in elongating pea stem segments. Plant Physiol.53: 669–673.

    CAS  Google Scholar 

  • Loesher, W. andNevins, D.J. 1972. Auxin-induced changes inAvena coleoptile cell wall composition. Plant Physiol.50: 556–563.

    Google Scholar 

  • Lorences, E.P. andZarra, I. 1987. Auxin-induced growth in hypocotyl segments ofPinus pinaster Aiton. J. Exp. Bot.191: 960–967.

    Google Scholar 

  • Maclachlan, G. andBrady, C. 1994. Endo-1–4-glucanase, xyloglucanase, and xyloglucan endo-transglycosylase activities versus potential substrates in ripening tomatoes. Plant Physiol.105: 965–974.

    CAS  PubMed  Google Scholar 

  • McDougall, G.J. andFry, S.C. 1990. Xyloglucan oligosaccharides promote growth and activate cellulase: evidence for a role of cellulase in cell expansion. Plant Physiol.93: 1042–1048.

    CAS  Google Scholar 

  • Masuda, Y. 1990. Auxin-induced cell elongation and cell wall changes. Bot. Mag. Tokyo103: 345–370.

    CAS  Google Scholar 

  • Medford, J.I., Elmer, J.S. andKlee, H.J. 1991. Molecular cloning and characterization of gene expressed in shoot apical meristems. Plant Cell3: 359–370.

    Article  CAS  PubMed  Google Scholar 

  • McCann, M.C. andRoberts, K. 1990. Direct visualization of cross-links in the primary plant cell wall. J. Cell Sci.96: 3213–324.

    Google Scholar 

  • McCann, M.C., Wells, B. andRoberts, K. 1991. Complexity in the spatial localization and length distribution of plant cell-wall matrix polysaccharides. J. Microscopy.166: 123–136.

    Google Scholar 

  • McQueen-Mason, S. andCosgrove, D.J. 1994. Distribution of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc. Natl. Acad. Sci. USA91: 6574–6578.

    CAS  PubMed  Google Scholar 

  • McQueen-Mason, S., Durachko, D.M. andCosgrove, D.J. 1992. Two endogenous proteins that induce cell wall extension in plants. Plant Cell4: 1425–1433.

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason, S., Fry, S.C., Durachko, D.M. andCosgrove, D.J. 1993. The relationship between xyloglucan endotransglycosylase andIn-vitro cell wall extension in cucumber hypocotyls. Planta190: 327–331.

    Article  CAS  PubMed  Google Scholar 

  • Nishitani, K. 1992. A novel method for detection of endo-xyloglucan transferase. Plant Cell Physiol.33: 1159–1164.

    CAS  Google Scholar 

  • Nishitani, K., Okamoto, S and Tomita, E. 1994. Functions of endo-xyloglucan transferase (EXT) in the cell wall construction in plants.In Abstract of the 4th International Congress of Plant Molecular Biology, Amsterdam, No. 577.

  • Nishitani, K. andMasuda, Y. 1979. Growth and cell wall changes in azuki bean epicotyls I. Changes in wall polysaccharides during intact growth. Plant Cell Physiol20: 63–74.

    CAS  Google Scholar 

  • Nishitani, K. andMasuda, Y. 1980. Modifications of cell wall polysaccharides during auxin-induced growth in azuki bean epicotyl segments. Plant Cell Physiol.21: 169–181.

    CAS  Google Scholar 

  • Nishitani, K. andMasuda, Y. 1981. Auxin induced changes in the cell wall structure: changes in the sugar compositions, intrinsic viscosity and molecular weight distributions of matrix polysaccharides of the epicotyl cell wall ofVigna angularis. Physiol. Plant.52: 482–494.

    CAS  Google Scholar 

  • Nishitani, K. andMasuda, Y. 1982a. Acid pH-induced structural changes in cell wall xyloglucans inVigna angularis epicotyl segments. Plant Sci. Lett.28: 87–94.

    CAS  Google Scholar 

  • Nishitani, K. andMasuda, K. 1982b. Roles of auxin and gibberellic acid in growth and maturation of epicotyls ofVigna angularis: Cell wall changes. Physiol. Plant.56: 38–45.

    CAS  Google Scholar 

  • Nishitani, K. andMasuda, Y. 1983. Auxin-induced changes in the cell wall xyloglucans: effects of auxin on the two different subfractions of xyloglucans in the epicotyl cell wall ofVigna angularis. Plant Cell Physiol.24: 345–355.

    CAS  Google Scholar 

  • Nishitani, K. andNevins, D.J. 1988. Enzymic analysis of feruloylated arabinoxylans (feraxan) derived fromZea mays cell wall I. Plant Physiol.87: 883–890.

    CAS  Google Scholar 

  • Nishitani, K. andNevins, D.J. 1989. Enzymic analysis of feruloylated arabinoxylans (feraxan) derived fromZea mays cell walls II. Plant Physiol.91: 242–248.

    CAS  Google Scholar 

  • Nishitani, K. andNevins, D.J. 1990. Enzymic analysis of feruloylated arabinoxylans (feraxan) derived fromZea mays cell walls III. Plant Physiol.93: 396–402.

    CAS  Google Scholar 

  • Nishitani, K. andNevins, D.J. 1991. Glucuronoxylan xylanohydrolase, a unique xylanase with the requirement for appendant glucuronosyl units. J. Biol. Chem.256: 6539–6543.

    Google Scholar 

  • Nishitani, K., Shibaoka, H. andMasuda, Y. 1979. Growth and cell wall changes in azuki bean epicotyls II. Changes in wall polysaccharides during auxin-induced growth of excised segments. Plant Cell Physiol.20: 463–472.

    CAS  Google Scholar 

  • Nishitani, K. andTominaga, R. 1991.In vitro molecular weight increase in xyloglucans by an apoplastic enzyme preparation from epicotyls ofVigna angularis. Physiol. Plant.82: 490–497

    Article  CAS  Google Scholar 

  • Nishitani, K. andTominaga, R. 1992. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J. Biol. Chem.267: 21058–21064.

    CAS  PubMed  Google Scholar 

  • Okazawa, K., Sato, Y., Nakagawa, T., Asada, K., Kato, L., Tomita, E. andNishitani, K. 1993. Molecular cloning and cDNA sequencing of endo-xyloglucan transferase, a novel class of glycosyltransferase that mediates molecular grafting between matrix polysacharides in plant cell walls. J. Biol. Chem.268: 25364–25368.

    CAS  PubMed  Google Scholar 

  • Peschke, V.M. andSachs, M.M. 1994. Characterization and expression of transcripts induced by oxygen deprivation in maize (Zea mays L). Plant Physiol.104: 387–394.

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer, W. 1900. In the Physiology of Plants. p. 480–485.

  • Potter, I. andFry, S.C. 1993. Xyloglucan endotransglycosylase activity in pea intermodes. Plant Physiol.103: 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Potter, I. andFry, S.C. 1994. Changes in xyloglucan endotransglycosylase (XET) activity during hormoneinduced growth in lettuce and cucumber hypocotyls and spinach cell suspension cultures. J. Exp. Bot.45: Special lssue 1703–1710.

    CAS  Google Scholar 

  • Preston, R.D. 1974. Physical Biology of Plant Cell Walls. Chapmann and Hall Ltd. London.

    Google Scholar 

  • Pritchard, J., Hetherington, P.R., Fry, S.C. andTomos, A.D. 1993. Xyloglucan endotransglycosylase activity, microsomal orientation and the profiles of cell wall properties along growing regions of maize roots. J. Exp. Bot.44: 1281–1289.

    CAS  Google Scholar 

  • Ray, P.M. 1967. Radioautographic study of cell wall deposition in growing plant cells. J. Cell Biol.35: 659–674.

    Article  CAS  PubMed  Google Scholar 

  • Ray, P.M. 1980. Cooperative action of β-glucan sysnthetase and UDP-xylose xylosyl transferase of Golgi membranes in the synthesis of xyloglucan likepolysaccharides. Biochim. Biophys. Acta.629: 431–444.

    CAS  PubMed  Google Scholar 

  • Revilla, G. andZarra, I. 1987. Changes in the molecular weight distribution of the hemicellulosic polysaccharides from rice coleoptiles growing under different conditions. J. Exp. Bot.38: 1818–1825.

    CAS  Google Scholar 

  • Sakurai, N. 1990. Cell wall functions in growth and development-a physical and chemical point of view. Bot. Mag. Tokyo104: 235–251.

    Google Scholar 

  • Sakurai, N., Nishitani, K. andMasuda, Y. 1979. Auxininduced changes in the molecular weight of hemicellulosic polysaccharides ofAvena coleoptile cell wall. Plant Cell Physiol.20: 1349–1357.

    CAS  Google Scholar 

  • Schulze, E. 1891. Zur Kenntniss der chemishen Zusammensetzung der pflanzlichen Zellmembranen. Berichte der Detsche Chemische Gesellschaft.24: 2277–2287.

    Google Scholar 

  • Smith, R.C., andFry, S.C. 1991. Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem. J.279: 529–535.

    CAS  PubMed  Google Scholar 

  • Talbott, L.D. andPickard, B.G. 1994. Differential changes in size distribution of xyloglucan in the cell walls of gravitropically respondingPisum sativum epicotyls. Plant Physiol.106: 755–761.

    CAS  PubMed  Google Scholar 

  • Talbott, L.D. andRay, P.M. 1992a. Molecular size and separability features of pea cell wall polysaccharides. Plant Physiol.98: 357–368.

    CAS  Google Scholar 

  • Talbott, R.D. andRay, P.M. 1992b. Changes in molecular size of previously deposited and newly synthesized pea cell wall matrix polysaccharides. Plant Physiol.98: 369–379.

    CAS  Google Scholar 

  • Talmadge, K., Keegstra, K, Bauer, W.D. andAlbersheim, P. 1973. The structure of plant cell walls. I. The macromolecular components of the walls of suspension-cultured sycamore cells with a detailed analysis of the pectic polysaccharides. Plant Physiol.51: 158–173.

    CAS  Google Scholar 

  • Tucker, M.L. andMilligan, S.B. 1991. Sequence analysis and comparison of avocade fruit and bean abscission cellulases. Plant Physiol.95: 928–933.

    CAS  Google Scholar 

  • Verma, D.P.S., Maclachlan, G.A., Byrne, H. andEwing, D. 1975. Regulation andin vitro translation of messenger ribonucleic acid for cellulase from auxin-treated pea epicotyls. J. Biol. Chem.250: 1019–1026.

    CAS  PubMed  Google Scholar 

  • Waeghe, T.J., Darvill, A.G., McNeil, M. andAlbersheim, P. 1983. Determination, by methylation analysis, of the glycosyl-linkage compositions of microgram quantities of complex carbohydrates. Carbohydr. Res.123: 281–304.

    Article  CAS  Google Scholar 

  • Wakabayashi, K., Sakural, N. andKuraishi, S. 1991. Differential effect of auxin on molecular weight distributions of xyloglucans in cell walls of outer and inner tissues from segments of dark grown squash (Cucurbita mxima Duch.) hypocotyls. Plant Physiol.95: 1070–1076.

    CAS  Google Scholar 

  • Yamamoto, R. andMasuda, Y. 1971. Stress-relaxation properties of Avena coleoptile cell wall. Physiol. Plant.25: 330–335.

    CAS  Google Scholar 

  • Yamamoto, R., Shinozaki, K. andMasuda, Y. 1970. Stress-relaxation properties of plant cell walls with special reference to auxin action. Plant Cell Physiol.11: 947–956.

    CAS  Google Scholar 

  • Zurek, D.M. andClouse, S.D. 1994. Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (Gycine max L.) epicotyls. Plant Physiol.104: 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Zurek, D.M., Rayle, D.L., McMorris, T.C. andClouse, S.D. 1994. Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid-regulated stem elongation. Plant Physiol.104: 505–513.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Recipient of the Botanical Sociaty Award of Young Scientists, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishitani, K. Endo-xyloglucan transferase, a new class of transferase involved in cell wall construction. J. Plant Res. 108, 137–148 (1995). https://doi.org/10.1007/BF02344317

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344317

Key words

Navigation