Skip to main content
Log in

Classification of basic daily movements using a triaxial accelerometer

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A generic framework for the automated classification of human movements using an accelerometry monitoring system is introduced. The framework was structured around a binary decision tree in which movements were divided into classes and subclasses at different hierarchical levels. General distinctions between movements were applied in the top levels, and successively more detailed subclassifications were made in the lower levels of the tree. The structure was modular and flexible: parts of the tree could be reordered, pruned or extended, without the remainder of the tree being affected. This framework was used to develop a classifier to identify basic movements from the signals obtained from a single, waist-mounted triaxial accelerometer. The movements were first divided into activity and rest. The activities were classified as falls, walking, transition between postural orientations, or other movement. The postural orientations during rest were classified as sitting, standing or lying. In controlled laboratory studies in which 26 normal, healthy subjects carried out a set of basic movements, the sensitivity of every classification exceeded 87%, and the specificity exceeded 94%; the overall accuracy of the system, measured as the number of correct classifications across all levels of the hierarchy, was a sensitivity of 97.7% and a specificity of 98.7% over a data set of 1309 movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aminian, K., Robert, P., Jéquier, E., andSchutz, Y. (1995): ‘Incline, speed, and distance assessment during unconstrained walking’,Med. Sci. Sports Exerc.,27, pp. 226–234

    Google Scholar 

  • Aminian, K., Robert, P., Buchser, E. E., Rutschmann, B., Hayoz, D., andDepairon, M. (1999): ‘Physical activity monitoring based on accelerometry: validation and comparison with video observation’,Med. Biol. Eng. Comput.,37, pp. 304–308

    Google Scholar 

  • Asada, H. H., Shaltis, P., Reisner, A., Rhee, S., andHutchinson, R. C. (2003): ‘Mobile monitoring with wearable photoplethysmographic biosensors’,IEEE Eng. Med. Biol. Mag.,22, pp. 28–40

    Article  Google Scholar 

  • Bouten, C. V., Verboeket-van de Venne, W. P., Westerterp, K. R., Verduin, M., andJanssen, J. D. (1996): ‘Daily physical activity assessment: comparison between movement registration and doubly labeled water’,J. Appl. Physiol.,81, pp. 1019–1026

    Google Scholar 

  • Bouten, C. V., Koekkoek, K. T., Verduin M., Kodde, R., andJanssen, J. D. (1997): ‘A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity’,IEEE Trans. Biomed. Eng.,44, pp. 136–147

    Article  Google Scholar 

  • Celler, B. G., Earnshaw, W., Ilsar, E. D., Betbeder-Matibet, L., Harris, M. F., Clark, R., Hesketh, T., andLovell, N. H. (1995): ‘Remote monitoring of health status of the elderly at home. A multidisciplinary project on aging at the University of New South Wales’,Int. J. BioMed. Comput.,40, pp. 147–155

    Article  Google Scholar 

  • Celler, B. G., Lovell, N. H., Mathie, M., Basilakis, J., Salleh, R., andMagrabi, F. (2000): ‘Ambulatory monitoring and real time diagnosis of clinical data’. HIC 2000, Integrating Information for Health Care, Adelaide

  • Currie, G., Rafferty, D., Duncan, G., Bell, F., andEvans, A. L. (1992): ‘Measurement of gait by accelerometer and walkway: a comparison study’,Med. Biol. Eng. Comput.,30, pp. 669–670

    Google Scholar 

  • Evans, A. L., Duncan, G., andGilchrist, W. (1991): ‘Recording accelerations in body movements’,Med. Biol. Eng. Comput.,29, pp. 102–104

    Google Scholar 

  • Fahrenberg, J., Foerster, F., Smeja, M., andMüller, W. (1997): ‘Assessment of posture and motion by multichannel piezoresistive accelerometer recordings’,Psychophysiology,34, pp. 607–612

    Google Scholar 

  • Foerster, F., andFahrenberg, J. (2000): ‘Motion pattern and posture: correctly assessed by calibrated accelerometers’,Behav. Res. Methods, Instrum. Comput.,32, pp. 450–457

    Google Scholar 

  • Jovanov, E., O'Donnell Lords, A., Raskovic, D., Cox, P. G., Adhami, R., andAdnrasik, F. (2003): ‘Stress monitoring using a distributed wireless intelligent sensor system’,IEEE Eng. Med. Biol. Mag.,22, pp. 49–55

    Article  Google Scholar 

  • Kamen, G., Patten, C., Du, C., andSison, S. (1998): ‘An accelerometry-based system for the assessment of balance and postural sway’,Gerontology,44, pp. 40–45

    Article  Google Scholar 

  • Kiani, K., Snijders, C. J., andGelsema, E. S. (1997): ‘Computerized analysis of daily life motor activity for ambulatory monitoring’,Technol. Health Care,5, pp. 307–318

    Google Scholar 

  • Korhonen, I., Pärkkä, J., andvan Gils, M. (2003): ‘Health monitoring in the home of the future’,IEEE Eng. Med. Biol. Mag.,22, pp. 66–73

    Article  Google Scholar 

  • Lehrman, M. L., Owens, A. R., Halleck, M. E., andMassman, E. L. (2002): United States Patent Office Document 6,501,386, United States

  • Makikawa, M., andMurakami, D. (1996): ‘Development of an ambulatory physical activity and behavior map monitoring system’. 18th Ann. Conf. IEEE Eng. Med. Biol. Soc., Amsterdam, pp. 71–72

  • Mathie, M. L., Lovell, N. H., Coster, A. C. F., andCeller, B. G. (2002): ‘Determining activity using a triaxial accelerometer’. Proc. 2nd Joint EMBS-BMES Conf. 23rd–26th Oct., Houston, USA

  • Mathie, M. J., Coster, A. C. F., Lovell, N. H., andCeller, B. G. (2003): ‘Detection of daily physical activities using a triaxial accelerometer’,Med. Biol. Eng. Comput.,41, pp. 296–301

    Google Scholar 

  • Mathie, M. J., Coster, A. C. F., Lovell, N. H., andCeller, B. G. (2004a). ‘Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement’,Physiol. Meas.,25, pp. R1-R20

    Article  Google Scholar 

  • Mathie, M. J., Coster, A. C. F., Lovell, N. H., Celler, B. G., Lord, S. R., andTiedernamm, A. (2004b). ‘A pilot study of long-term monitoring of human movements in the home using accelerometry’,J. Telemed. Telecare,10, pp. 144–151

    Article  Google Scholar 

  • Mayagoitia, R. E., Lotters, J. C., Veltink, P. H., andHermens, H. (2002): ‘Standing balance evaluation using a triaxial accelerometer’,Gait Posture,16, pp. 55–59

    Article  Google Scholar 

  • Ng, A. V., andKent-Braun, J. A. (1997): ‘Quantitation of lower physical activity in persons with multiple sclerosis’,Med. Sci. Sports Exerc.,29, pp. 517–523

    Google Scholar 

  • Park, S., andJayaraman, S. (2003): ‘Enhancing the quality of life through wearable technology’,IEEE Eng. Med. Biol. Mag.,22, pp. 41–48

    Google Scholar 

  • Petelenz, T. J., Peterson, S. C., andJacobsen, S. C. (2002): United States Patent Office Document 6,433,690, United States

  • Steele, B. G., Holt, L., Belza, B., Ferris, S. M., Lakshminaryan, S., andBuchner, D. M. (2000): ‘Quantitating physical activity in COPD using a triaxial accelerometer’,Chest,117, pp. 1359–1367

    Google Scholar 

  • Tamura, T., Sekine, M., Ogawa, M., Togawa, T., andFukui, Y. (1997): ‘Classification of acceleration waveforms during walking by wavelet transform’,Methods of Inform. Med.,36, pp. 356–369

    Google Scholar 

  • Uiterwaal, M., Glerum, E. B., Busser, H. J., andvan Lummel, R. C. (1998): ‘Ambulatory monitoring of physical activity in working situations, a validation study’,J. Med. Eng. Technol.,22, pp. 168–172

    Google Scholar 

  • Veltink, P. H., Bussmann, H. B., De Vries, W., Martens, W. L., andvan Lummel, R. C. (1996): ‘Detection of static and dynamic activities using uniaxial accelerometers’,IEEE Trans. Rehabil. Eng.,4, pp. 375–385

    Google Scholar 

  • Winters, J. M., Wang, Y., andWinters, J. M. (2003): ‘Wearable sensors and telerehabilitation’,IEEE Eng. Med. Biol. Mag.,22, pp. 56–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Lovell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathie, M.J., Celler, B.G., Lovell, N.H. et al. Classification of basic daily movements using a triaxial accelerometer. Med. Biol. Eng. Comput. 42, 679–687 (2004). https://doi.org/10.1007/BF02347551

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02347551

Keywords

Navigation