Skip to main content
Log in

Comparison of the structure of human intervertebral discs in the cervical, thoracic and lumbar regions of the spine

Comparaison de la structure des disques intervertébraux humains dans les régions cervicale, thoracique et lombaire de la colonne vertébrale

  • Original Articles
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Summary

Posterior and anterior heights, cross-sectional area and shape were measured for all the intervertebral discs in four spines from elderly human cadavers. Disc height was a minimum at the T4–5 level; thoracic discs were less wedge-shaped than those in the cervical and lumbar regions. Cross-sectional area increased from the cranial to caudal extremity; at the L5-S1 level the nucleus pulposus occupied a high proportion of this area. Cervical discs tended to have an elliptical cross-sectional shape, thoracic discs were more circular and lumbar discs tended to have an elliptical cross-section which was flattened or re-entrant posteriorly. This shape distribution was quantified by defining a shape index which had a maximum value of 1 for a circular cross-section. Orientations of the reinforcing fibres in the outer lamellae of the anterior annulus fibrosus were measured from 27 discs by X-ray diffraction. For these measurements, C3–4, T7–8 and L2–3 were chosen as representative of cervical, thoracic and lumbar discs. The fibre tilt, with respect to the axis of the spine, was significantly less in the cervical discs (at 65°) than in the thoracic and lumbar discs (about 70°). These findings are interpreted in relation to differing functional requirements and possible mechanisms of failure in the cervical, thoracic and lumbar regions of the spine in the light of current knowledge on the biomechanics of the intervertebral disc.

Résumé

Les hauteurs postérieure et antérieure, la superficie et la forme en section transversale ont été mesurées pour tous les disques intervertébraux de quatre colonnes vertébrales prélevées chez des sujets âgés. La hauteur du disque était minimale au niveau T4–5; les disques thoraciques étaient moins cunéiformes que ceux des régions cervicale et lombaire. La superficie en section transversale augmentait de l'extrémité crâniale jusqu'à l'extrémité caudale; au niveau L5-S1 le noyau gélatineux occupait une grande proportion de cette surface. Les disques cervicaux avaient tendance à posséder une forme elliptique en section transversale, les disques thoraciques étaient plus circulatires et les disques lombaires avaient tendance à posséder une section transversale elliptique qui était plane ou concave en arrière. Cette distribution de formes a été quantifiée en définissant un indice de forme qui avait une valeur maximum de 1 pour une section transversale circulaire. Les orientations des fibres de renfort dans les lamelles extérieures de l'anneau fibreux antérieur de 27 disques ont été mesurées au moyen de la diffraction des rayons X. Pour ces mesures, nous avons choisi C3–4, T7–8 et L2–3 comme représentatifs des disques cervicaux, thoraciques et lombaires. L'inclinaison des fibres par rapport à l'axe de la colonne vertébrale, était significativement moindre dans les disques cervicaux (vers 65°) que dans les disques thoraciques et lombaires (vers 70°). Ces résultats sont interprétés selon les exigences fonctionnelles différentes et les mécanismes possibles de rupture dans les régions cervicale, thoracique et lombaire de la colonne vertébrale, en tenant complte des connaissances contemporaines de la biomécanique du disque intervertébral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams' MA, Hutton WC (1982) Prolapsed intervertebral disc: a hyperflexion injury. Spine 7: 184–191

    Google Scholar 

  2. Brown T, Hansen RJ, Yorra AJ (1957) Some mechanical tests on lumbo-sacral spine with particular reference to intervertebral discs. A preliminary report. J Bone Joint Surg 39A: 1135–1164

    Google Scholar 

  3. Coventry MB, Chromley RK, Kernahan JW (1945) The intervertebral disc, its microscopic anatomy and pathology. Part II: changes in the intervertebral disc concomitant with age. J Bone Joint Surg 27: 233–247

    Google Scholar 

  4. Farfan HF (1973) Mechanical Disorders of the Low Back. Lea and Febiger, Philadelphia

    Google Scholar 

  5. Farfan HF, Cossette, JW, Robertson GH, Wells RV, Kraus H (1979) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of discs degeneration. J Bone Joint Surg 52A: 468–497

    Google Scholar 

  6. Farfan HF, Huberdeau RM, Dubow MI (1972) The influence of geometric factors on the pattern of disc degeneration — a post mortem study. J Bone Joint Surg 54A: 492–510

    Google Scholar 

  7. Grieve GP (1981) Common Vertebral Joint Problems, Churchill Livingstone, London, pp 41–43

    Google Scholar 

  8. Hickey DS, Hukins DWL (1979) Effect of methods of preservations on the arrangement of collagen fibrils in connective tissue matrices; an X-ray diffraction study of annulus fibrosus. Connect Tissue Res 6: 223–228

    PubMed  CAS  Google Scholar 

  9. Hickey DS, Hukins DWL (1980) Relation between the structure of the annulus fibrosus and the function and failure of the intervertebral disc. Spine 5: 106–116

    PubMed  CAS  Google Scholar 

  10. Hickey DS, Hukins DWL (1980) X-ray diffraction studies of the arrangement of collagenous fibres in human fetal intervertebral disc. J. Anat 131: 81–90

    PubMed  CAS  Google Scholar 

  11. Hickey DS, Hukins DWL (1982) Aging changes in the macromolecular organization of the intervertebral disc: an X-ray diffraction and electron microscopic study. Spine 7: 234–242

    PubMed  CAS  Google Scholar 

  12. Hollingshead WH (1969) Anatomy for Surgeons. Harper and Row, New York, pp 79–199

    Google Scholar 

  13. Horton WG (1958) Further observations on the elastic mechanism of the intervertebral disc. J Bone Joint Surg 40B: 552–557

    Google Scholar 

  14. Jayson MIV, Herbert CM, Barks JS (1973) Intervertebral dises: nuclear morphology and bursting pressure. Ann Rheum Dis 32: 308–315

    Article  PubMed  CAS  Google Scholar 

  15. Klein JA, Hickey DS, Hukins DWL (1983) Radial bulging of the annulus fibrosus during compression of the intervertebral disc. J Biomech 16: 211–217

    Article  PubMed  CAS  Google Scholar 

  16. Lusted LB, Keats TE (1973) An Atlas of Roentgenographic Measurement. Year Book Medical Publishers, Chicago, pp 116–117

    Google Scholar 

  17. Nehme A-ME, Riseborough EJ, Reed RB (1980) In: Scoliosis (1979). Zorab PA and Siegler D (eds.). Academic Press, London, pp 103–109

    Google Scholar 

  18. Peacock A (1952) Observations on the postnatal structure of the intervertebral disc in man. J Anat 86: 162–179

    PubMed  CAS  Google Scholar 

  19. Roaf R (1960) A study of the biomechanics of spinal injuries. J Bone Joint Surg 42B: 810–823

    Google Scholar 

  20. Rothman RH, Simeone FA (1975) The Spine, Vol. 1. WB Saunders, Philadelphia, pp 19–68

    Google Scholar 

  21. Taylor CJ, Brunt JN, Dixon RN, Gregory PJ (1977) The Magiscan: a new generation, software based, automatic image analysis. In: Quantitative Analysis of Microstructures in Materials Science, Biology and Medicine. Dr Riederer-Verlag GmbH, Stuttgart, pp 433–442

    Google Scholar 

  22. Taylor JR (1975) Growth of the human intervertebral disc and vertebral bodies. J Anat 120: 49–68

    PubMed  CAS  Google Scholar 

  23. Todd WT, Pyle IS (1928) A quantitative study of the vertebral column by direct and roentgenographic methods. Am J Phys Anthropol 21: 321–337

    Article  Google Scholar 

  24. Virgin WJ (1951) Experimental investigations into the physical properties of intervertebral discs. J Bone Joint Surg 33B: 607–611

    Google Scholar 

  25. Walmsley R (1953) The development and growth of the intervertebral disc. Edinburgh Med J 60: 341–365

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pooni, J., Hukins, D., Harris, P. et al. Comparison of the structure of human intervertebral discs in the cervical, thoracic and lumbar regions of the spine. Surg Radiol Anat 8, 175–182 (1986). https://doi.org/10.1007/BF02427846

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02427846

Key words

Navigation