Skip to main content
Log in

Evolution of the cytochromeb gene of mammals

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

With the polymerase chain reaction (PCR) and versatile primers that amplify the whole cytochromeb gene (∼ 1140 bp), we obtained 17 complete gene sequences representing three orders of hoofed mammals (ungulates) and dolphins (cetaceans). The fossil record of some ungulate lineages allowed estimation of the evolutionary rates for various components of the cytochromeb DNA and amino acid sequences. The relative rates of substitution at first, second, and third positions within codons are in the ratio 10 to 1 to at least 33. For deep divergences (>5 million years) it appears that both replacements and silent transversions in this mitochondrial gene can be used for phylogenetic inference. Phylogenetic findings include the association of (1) cetaceans, artiodactyls, and perissodactyls to the exclusion of elephants and humans, (2) pronghorn and fallow deer to the exclusion of bovids (i. e., cow, sheep, and goat), (3) sheep and goat to the exclusion of other pecorans (i. e., cow, giraffe, deer, and pronghorn), and (4) advanced ruminants to the exclusion of the chevrotain and other artiodactyls. Comparisons of these cytochromeb sequences support current structure-function models for this membrane-spanning protein. That part of the outer surface which includes the Qo redox center is more constrained than the remainder of the molecule, namely, the transmembrane segments and the surface that protrudes into the mitochondrial matrix. Many of the amino acid replacements within the transmembrane segments are exchanges between hydrophobic residues (especially leucine, isoleucine, and valine). Replacement changes at first and second positions of codons approximate a negative binomial distribution, similar to other protein-coding sequences. At four-fold degenerate positions of codons, the nucleotide substitutions approximate a Poisson distribution, implying that the underlying mutational spectrum is random with respect to position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465

    Article  PubMed  CAS  Google Scholar 

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156: 683–717

    Article  PubMed  CAS  Google Scholar 

  • Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103: 287–312

    PubMed  CAS  Google Scholar 

  • Beintema JJ, Schüller C, Irie M, Carsana A (1988) Molecular evolution of the ribonuclease superfamily. Prog Biophys Mol Biol 51: 165–192

    Article  PubMed  CAS  Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167–180

    Article  PubMed  CAS  Google Scholar 

  • Brown WM (1985) The mitochondrial genome of animals. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 95–130

    Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18: 225–239

    Article  PubMed  CAS  Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. WH Freeman, New York

    Google Scholar 

  • Carlson SS, Wilson AC, Maxson RD (1978) Do albumin clocks run on time? Science 200: 1183–1185

    Article  PubMed  Google Scholar 

  • Czelusniak J, Goodman M, Moncrief ND, Kehoe SM (1990) Maximum parsimony approach to construction of evolutionary trees from aligned homologous sequences. Methods Enzymol 183: 601–615

    PubMed  CAS  Google Scholar 

  • de Jong WW (1985) Superordinal affinities of rodentia studied by sequence analysis of eye lens proteins. In: Luckett WP, Hartenberger J-L (eds) Evolutionary relationships among rodents. A multidisciplinary analysis. Plenum, New York, pp 211–226

    Google Scholar 

  • di Rago J-P, Netter P, Slonimski PP (1990) Pseudo-wild type revertants from inactive apocytochromeb mutants as a tool for the analysis of the structure/function relationships of the mitochondrial ubiquinol-cytochromec reductase ofSaccharomyces cerevisiae. J Biol Chem 265: 3332–3339

    PubMed  Google Scholar 

  • Easteal S (1990) The pattern of mammalian evolution and the relative rate of molecular evolution. Genetics 124: 165–173

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791

    Article  Google Scholar 

  • Fukuda M, Wakasugi S, Tsuzuki T, Nomiyama H, Shimada K, Miyata T (1985) Mitochondrial DNA-like sequences in the human nuclear genome. Characterization and implications in the evolution of mitochondrial DNA. J Mol Biol 186: 257–266

    Article  PubMed  CAS  Google Scholar 

  • Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sbisà E, Saccone C (1989) The complete nucleotide sequence of theRattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28: 497–516

    PubMed  CAS  Google Scholar 

  • Gyllensten UB, Erlich HA (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of theHLA-DQA locus. Proc Natl Acad Sci USA 85: 7652–7656

    Article  PubMed  CAS  Google Scholar 

  • Harrison RG (1989) Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol & Evol 4: 6–11

    Article  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54: 1015–1069

    Article  PubMed  CAS  Google Scholar 

  • Hayasaka K, Gojobori T, Horai S (1988) Molecular phylogeny and evolution of primate mitochondrial DNA. Mol Biol Evol 5: 626–644

    PubMed  CAS  Google Scholar 

  • Holmquist R, Goodman M, Conroy T, Czelusniak J (1983) The spatial distribution of fixed mutations within genes coding for proteins. J Mol Evol 19: 437–448

    Article  PubMed  CAS  Google Scholar 

  • Howell N (1989) Evolutionary conservation of protein regions in the proton-motive cytochromeb and their possible roles in redox catalysis. J Mol Evol 29: 157–169

    Article  PubMed  CAS  Google Scholar 

  • Howell N, Gilbert K (1988) Mutational analysis of the mouse mitochondrial cytochromeb gene. J Mol Biol 203: 607–618

    Article  PubMed  CAS  Google Scholar 

  • Irwin DM, Wilson AC (1989) Multiple cDNA sequences and the evolution of bovine stomach lysozyme. J Biol Chem 264: 11387–11393

    PubMed  CAS  Google Scholar 

  • Irwin DM, Wilson AC (1990) Concerted evolution of ruminant stomach lysozymes. Characterization of lysozyme cDNA clones from sheep and deer. J Biol Chem 265: 4944–4952

    PubMed  CAS  Google Scholar 

  • Irwin DM, Wilson AC (1991) Limitations of molecular methods for establishing the phylogeny of mammals, with special reference to the position of elephants. In: Szalay FS, Novacek MJ, McKenna MC (eds) American Museum of Natural History symposium on mammalian phylogeny. Princeton University Press, Princeton NJ (in press)

    Google Scholar 

  • Irwin DM, Sidow A, White RT, Wilson AC (1989) Multiple genes for ruminant lysozymes. In: Smith-Gill SJ, Sercarz EE (eds) The immune response to structurally defined proteins: the lysozyme model. Adenine Press, Schenectady NY, pp 73–85

    Google Scholar 

  • Janis CM (1988) New ideas in ungulate phylogeny and evolution. Trends Ecol & Evol 3: 291–297

    Article  Google Scholar 

  • Jollès J, Jollès P, Bowman BH, Prager EM, Stewart C-B, Wilson AC (1989) Episodic evolution in the stomach lysozymes of ruminants. J Mol Evol 28: 528–535

    PubMed  Google Scholar 

  • Jollès J, Prager EM, Alnemri ES, Jollès P, Ibrahimi IM, Wilson AC (1990) Amino acid sequences of stomach and nonstomach lysozymes of ruminants. J Mol Evol 30: 370–382

    Article  PubMed  Google Scholar 

  • Kamimura N, Ishii S, Liandong M, Shay JW (1989) Three separate mitochondrial DNA sequences are contiguous in human genomic DNA. J Mol Biol 210: 703–707

    Article  PubMed  CAS  Google Scholar 

  • Keohavong P, Thilly WG (1989) Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci USA 86: 9253–9257

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD, White TJ (1989) Evolutionary analysis via PCR. In: Erlich HA (ed) PCR technology. Principles and applications for DNA amplification. Stockton Press, New York, pp 137–147

    Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in mammals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86: 6196–6200

    Article  PubMed  CAS  Google Scholar 

  • Koop BF, Goodman M (1988) Evolutionary and developmental aspects of two hemoglobin β-chain genes (∈M and βM) of opossum. Proc Natl Acad Sci USA 85: 3893–3897

    Article  PubMed  CAS  Google Scholar 

  • Larson A, Wilson AC (1989) Patterns of ribosomal RNA evolution in salamanders. Mol Biol Evol 6: 131–154

    PubMed  Google Scholar 

  • Li W-H, Luo C-C, Wu C-I (1985) Evolution of DNA sequences. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 1–94

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101: 20–78

    Article  PubMed  CAS  Google Scholar 

  • Meyer A, Wilson AC (1990) Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J Mol Evol 31: 359–364

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto MM, Boyle SM (1989) The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Elsevier, Amsterdam, pp 437–450

    Google Scholar 

  • Mross GA, Doolittle RF (1967) Amino acid sequence studies on artiodactyl fibrinopeptides. II. Vicuna, elk, muntjak, pronghorn antelope, and water buffalo. Arch Biochem Biophys 122: 674–684

    Article  CAS  Google Scholar 

  • Nomiyama H, Fukuda M, Wakasugi S, Tsuzuki T, Shimada K (1985) Molecular structures of mitochondrial-DNA-like sequences in human nuclear DNA. Nucleic Acids Res 13: 1649–1658

    PubMed  CAS  Google Scholar 

  • Novacek MJ (1989) Higher mammal phylogeny: the morphological-molecular synthesis. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Elsevier, Amsterdam, pp 421–435

    Google Scholar 

  • Pääbo S, Wilson AC (1988) Polymerase chain reaction reveals cloning artefacts. Nature 334: 387–388

    Article  PubMed  Google Scholar 

  • Prager EM, Wilson AC (1988) Ancient origin of lactalbumin from lysozyme: analysis of DNA and amino acid sequences. J Mol Evol 27: 326–335

    Article  PubMed  CAS  Google Scholar 

  • Saccone C, Attimonelli M, Lanave C, Gallerani R, Pesole G (1987) The evolution of mitochondrially coded cytochrome genes: a quantitative estimate. In: Papa S, Chance B, Ernster L (eds) Cytochrome systems. Plenum, New York, pp 103–109

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425

    PubMed  CAS  Google Scholar 

  • Sarich VM (1985) Rodent macromolecular systematics. In: Luckett WP, Hartenberger J-L (eds) Evolutionary relationships among rodents. A multidisciplinary analysis. Plenum, New York, pp 423–452

    Google Scholar 

  • Savage DE, Russell DE (1983) Mammalian paleofaunas of the world. Addison-Wesley, Reading MA

    Google Scholar 

  • Shoshani J (1986) Mammalian phylogeny: comparison of morphological and molecular results. Mol Biol Evol 3: 222–242

    PubMed  CAS  Google Scholar 

  • Sidow A, Wilson AC (1990) Compositional statistics: an improvement of evolutionary parsimony and its application to deep branches in the tree of life. J Mol Evol 31: 51–68

    Article  PubMed  CAS  Google Scholar 

  • Simon C, Pääbo S, Kocher TD, Wilson AC (1990) Evolution of mitochondrial ribosomal RNA in insects as shown by the polymerase chain reaction. In: Clegg M, Clark S (eds) Molecular evolution. UCLA symposia on molecular and cellular biology, new series, vol 122. Alan R Liss, New York, pp 235–244

    Google Scholar 

  • Simpson GG (1945) The principles of classification and a classification of mammals. Bull Am Mus Nat Hist 85: 1–350

    Google Scholar 

  • Southern SO, Southern PJ, Dizon AE (1988) Molecular characterization of a cloned dolphin mitochondrial genome. J Mol Evol 28: 32–42

    Article  PubMed  CAS  Google Scholar 

  • Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85: 2653–2657

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (1989) PAUP: phylogenetic analysis using parsimony, version 3.0b. Illinois Natural History Survey, Champaign IL

    Google Scholar 

  • Thomas WK, Beckenbach AT (1989) Variation in salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution. J Mol Evol 29: 233–245

    Article  PubMed  CAS  Google Scholar 

  • Thomas WK, Maa J, Wilson AC (1989) Shifting constraints on tRNA genes during mitochondrial DNA evolution in animals. New Biologist 1: 93–100

    PubMed  CAS  Google Scholar 

  • Tindall KR, Kunkel TA (1988) Fidelity of DNA synthesis by theThermus aquaticus DNA polymerase. Biochemistry 27: 6008–6013

    Article  PubMed  CAS  Google Scholar 

  • Uzzell T, Corbin KW (1971) Fitting discrete probability distributions to evolutionary events. Science 172: 1089–1096

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Hayashi Y, Semba R, Ogasawara N (1985) Bovine mitochondrial DNA polymorphism in restriction endonuclease cleavage patterns and the location of the polymorphic sites. Biochem Genet 23: 947–957

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Masangkay JS, Wakana S, Saitou N, Tomita T (1989) Mitochondrial DNA polymorphism in native Philippine cattle based on restriction endonuclease cleavage patterns. Biochem Genet 27: 431–438

    Article  PubMed  CAS  Google Scholar 

  • White TJ, Arnheim N, Erlich HA (1989) The polymerase chain reaction. Trends Genet 5: 185–189

    Article  PubMed  CAS  Google Scholar 

  • Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26: 375–400

    Google Scholar 

  • Wilson AC, Zimmer EA, Prager EM, Kocher TD (1989) Restriction mapping in the molecular systematics of mammals: a retrospective salute. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Elsevier, Amsterdam, pp 407–419

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irwin, D.M., Kocher, T.D. & Wilson, A.C. Evolution of the cytochromeb gene of mammals. J Mol Evol 32, 128–144 (1991). https://doi.org/10.1007/BF02515385

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02515385

Key words

Navigation