Skip to main content
Log in

Theoretical analysis of non-invasive oscillometric maximum amplitude algorithm for estimating mean blood pressure

  • Communication
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A theoretical analysis is performed to evaluate the effect of arterial mechanical and blood pressure pulse properties on the accuracy of non-invasive oscillometric maximum amplitude algorithm (MAA) estimates of the mean blood pressure obtained using air-filled occlusive cuffs. Invasively recorded blood pressure pulses, selected for their varied shapes, are scaled to simulate a wide range of blood pulse pressures (diastolic blood pressure minus systolic blood pressure). Each scaled blood pressure pulse is transformed through an exponential model of an artery to create a series of blood volume pulses from which a simulated oscillometric waveform is created and the corresponding MAA estimate of the mean blood pressure and error (mean blood pressure minus MAA estimate) are determined. The MAA estimates are found to depend on the arterial blood pressure. The errors are found to depend on the arterial mechanical properties, blood pressure pulse shape and blood pulse pressure. These results suggest that there is no direct relationship between the mean blood presure and MAA estimate, and that multiple variables may affect the accuracy of MAA estimates of the mean blood pressure obtained using air-filled occlusive cuffs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Drzewiecki, G., Hood, R., andApple, H. (1994): ‘Theory of the oscillometric maximum and the systolic and diastolic detection ratios,’Ann. Biomed. Eng.,22, pp. 88–96

    Article  Google Scholar 

  • Epstein, R. H., Huffnagle, S., andBartkowski, R. R. (1991): ‘Comparative accuracies of a finger blood pressure monitor and an oscillometric blood pressure monitor,’J. Clin. Monit.,7, pp. 161–167

    Article  Google Scholar 

  • Forster, F. K., andTurney, D. (1986): ‘Oscillometric determination of diastolic, mean and systolic blood pressure—a numerical model,’J. Biomech. Eng.,108, pp. 359–364

    Google Scholar 

  • Gardner, R. M. (1986): ‘Hemodynamic monitoring: from catheter to display,’Acute Care,12, pp. 3–33.

    Google Scholar 

  • Geddes, L. A. (1970): ‘The direct and indirect measurement of blood pressure’ (Year Book Medical Publishers, Chicago)

    Google Scholar 

  • Geddes, L. A., Voelz, M., Combs, C., Reiner, D., andBabbs, C. F. (1982): ‘Characterization of the oscillometric method for measuring indirect blood pressure,’Ann. Biomed. Eng.,10, pp. 271–280

    Article  Google Scholar 

  • Gizdulich, P., andWesseling, K. H. (1988): ‘Forearm arterial pressure-volume relationships in man,’Clin. Phys. Physiol. Meas.,9, pp. 123–132

    Article  Google Scholar 

  • Gorback, M. S., Quill, T. J., andLavine, M. L. (1991): ‘The relative accuracies of two automated noninvasive arterial pressure measurement devices,’J. Clin. Monit.,7, pp. 13–22

    Article  Google Scholar 

  • Gravlee, G. P., andBrockschmidt, J. K. (1990): ‘Accuracy of four indirect methods of blood pressure measurement, with hemodynamic correlations,’J. Clin. Monit.,6, pp. 284–298

    Article  Google Scholar 

  • Hardy, H. H., andCollins, R. E. (1982): ‘On the pressure-volume relationship in circulatory elements,’Med. Biol. Eng. Comput.,20, pp. 565–570

    Article  Google Scholar 

  • Lemler, J., Kück, K., Haryadi, D. G., Baker, P. B., andWesternskow, D. R. (1996): ‘Variability of the blood pressure k “constant” in humans.Proceedings of the Annual Meeting of the Society for Technology in Anesthesia, San Diego, California, USA

  • Link, W. T. (1975): ‘Apparatus and process for producing sphygmometric information.’ US Patent 3,903,872

  • Link, W. T. (1986): ‘Method and apparatus for obtaining an individual’s systolic blood pressure.’ US Patent 4,564,020

  • Link, W. T. (1987): ‘Techniques for obtaining information associated with an individual’s blood pressure including specifically a stat mode technique.’ US Patent 4,699,152

  • Mauck, G. W., Smith, C. R., Geddes, L. A., andBourland, J. D. (1980): ‘The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure—Part II,’J. Biomech. Eng.,102, pp. 28–33

    Article  Google Scholar 

  • Ng, K.-G., andSmall, C. F. (1993): ‘Changes in oscillometric pulse amplitude envelope with cuff size: implications for blood pressure measurement criteria and cuff size selection,’J. Biomed. Eng.,15, pp. 279–282

    Article  Google Scholar 

  • Posey, J. A., Geddes, L. A., Williams, H., andMoore, A. G. (1969): ‘The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure: Part I,’Cardiovasc. Res. Center Bull.,8, pp. 15–25

    Google Scholar 

  • Ramsey, M. (1979): ‘Noninvasive automatic determination of mean arterial pressure,’Med. Biol. Eng. Comput.,17, pp. 11–18

    Article  Google Scholar 

  • Rutten, A. J., Ilsley, A. H., Skowronski, G. A., andRunciman, W. B. (1986): ‘A comparative study of the measurement of mean arterial blood pressure using, automatic oscillometers, arterial cannulation and auscultation,’Anaesth. Intens. Care,14, pp. 58–65

    Google Scholar 

  • Shimazu, H., Ito, H., Kobayashi, H., andYamakoshi, K. (1986): ‘Idea to measure diatolic arterial pressure by volume oscillometric method in human fingers,’Med. Biol. Eng. Comput.,24, pp. 549–554

    Article  Google Scholar 

  • Shimazu, H., Ito, H., Kawarada, A., Kobayashi, H., Hiraiwa, A., andYamakoshi, K. (1989): ‘Vibration technique for indirect measurement of diastolic arterial pressure in human fingers,’Med. Biol. Eng. Comput.,27, pp. 130–136

    Article  Google Scholar 

  • Sun, S. (1989): ‘New approaches to the noninvasive determination of arterial blood pressure and compliance profile.’ PhD dissertation, University of Utah, Salt Lake City, USA

  • Ursino, M., andCristalli, C. (1996): ‘A mathematical study of some biomechanical factors affecting the oscillometric blood pressure measurement,’IEEE Trans. Biomed. Eng.,43, pp. 761–778

    Article  Google Scholar 

  • Vachtsevanos, G., Kalaitzakis, C., Papamarkos, N., Ziakas, G., Economou, K., andGemitzis, K. (1984): ‘Correlation study of arterial blood pressure level to the amplitude of the pressure pulse waveform,’J. Biomed. Eng.,6, pp. 33–39

    Article  Google Scholar 

  • Voelz, M. (1981): ‘Measurement of the blood-pressure constant k, over a pressure range in the canine radial artery,’Med. Biol. Eng. Comput.,19, pp. 535–537

    Article  Google Scholar 

  • Wesseling, K. H., Settels, J. J., andDe Wit, B. (1986): ‘The measurement of continuous finger arterial pressure noninvasively in stationary subjects’in Schmidt, T. H.et al. (Eds.): ‘Biological and psychological factors in cardiovascular disease’ (Springer-Verlag, Berlin, Heidelberg) pp. 355–375

    Google Scholar 

  • Yamakoshi, K., Shimazu, H., andTogawa, T. (1980): ‘Indirect measurement of instantaneous arterial blood pressure in the human finger by the vascular unloading technique,’IEEE Trans. Biomed. Eng.,27, pp. 150–155

    Google Scholar 

  • Yamakoshi, K., Shimazu, H., Shibata, M., andKamiya, A. (1982a): ‘New oscillometric method for indirect measurement of systolic and mean arterial pressure in the human finger. Part 1: model experiment,’Med. Biol. Eng. Comput.,20, pp. 307–313

    Article  Google Scholar 

  • Yamakoshi, K., Shimazu, H., Shibata, M. andKamiya, A. (1982b): ‘New oscillometric method for indirect measurement of systolic and mean arterial pressure in the human finger. Part 2: correlation study,’Med. Biol. Eng. Comput.,20, pp. 314–318

    Article  Google Scholar 

  • Yelderman, M., andReam, A. K. (1979): ‘Indirect measurement of mean blood pressure in the anesthetized patient,’Anesthesiology,50, pp. 253–256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, P.D., Westenskow, D.R. & Kück, K. Theoretical analysis of non-invasive oscillometric maximum amplitude algorithm for estimating mean blood pressure. Med. Biol. Eng. Comput. 35, 271–278 (1997). https://doi.org/10.1007/BF02530049

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530049

Keywords

Navigation