Skip to main content
Log in

Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The environment of CO3 2− ions in the bone mineral of chickens of different ages and in bone fractions of different density have been investigated by resolution-enhanced Fourier Transform Infrared (FTIR) Spectroscopy. Three carbonate bands appear in thev 2 CO3 domain at 878, 871, and 866 cm−1, which may be assigned to three different locations of the ion in the mineral: in monovalent anionic sites of the apatitic structure (878 cm−1), in trivalent anionic sites (871 cm−1), and in unstable location (866 cm−1) probably in perturbed regions of the crystals. The distribution of the carbonate ions among these locations was estimated by comparing the intensities of the corresponding FTIR spectral bands. The intensity ratio of the 878 and 871 cm−1 bands remains remarkably constant in whole bone as well as in the fractions obtained by density centrifugation. On the contrary, the intensity ratio of the 866 cm−1 to the 871 cm−1 band was found to vary directly and decreased with the age of the animal. In bone of the same age, the relative content of the unstable carbonate ion was found to be highest in the most abundant density centrifugation fraction. A resolution factor of the CO3 2− band (CO3 RF) was calculated from the FTIR spectra which was shown to be very sensitive to the degree of crystallinity of the mineral. The crystallinity was found to improve rapidly with the age of the animal. The CO3 RF in the bone samples obtained by density centrifugation from bone of the same animal was found to be essentially constant. This indicates a fairly homogeneous, crystalline state of the mineral phase. A comparison of the maturation characteristics of synthetic carbonated apatites with bone mineral indicates that a simple, passive, physicochemical maturation process cannot explain the changes observed in the mineral phase of whole bone tissue or in the density centrifugation fractions of bone during aging and maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Burnell JM, Teubner EJ, Miller AG (1980) Normal maturational changes in bone matrix, mineral, and crystal size in the rat. Calcif Tissue Int 31:13–19

    Article  PubMed  CAS  Google Scholar 

  2. Legros R, Balmain N, Bonel G (1986) Structure and composition of the mineral phase of the periosteal bone. J Chem Res Synop 77:2313–2317

    Google Scholar 

  3. Pellegrino ED, Biltz RM (1971) Mineralization in the chick embryo. I. Monohydrogen phosphate and carbonate relationships during maturation of the bone crystal compex. Calcif Tissue Res 128–135

  4. Francis MD, Webb WC (1971) Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor. Calcif Tissue Res 6:335–342

    Article  PubMed  CAS  Google Scholar 

  5. Brown WE (1966) Crystal growth of bone mineral. Clin Orthop 44:205–220

    PubMed  CAS  Google Scholar 

  6. Termine JD, Posner AS (1966) Amorphous/crystalline interrelationship in bone mineral. Calcif Tissue Res 1:8–23

    Article  Google Scholar 

  7. Emerson WH, Fischer ED (1962) The infrared absorption spectra of carbonate in calcified tissues. Arch Oral Biol 7:671–683

    Article  CAS  Google Scholar 

  8. Baxter JD, Biltz RM, Pellegrino ED (1966) The physical state of bone carbonate: a comparative infrared study in several mineralized tissues. Yale J Biol Med 3:456–470

    Google Scholar 

  9. Rey C, Collins B, Goehl T, Glimcher MJ (1989) The carbonate environment of bone mineral. A resolution-enhanced Fourier Transform Infrared Spectroscopy Study. Calcif Tissue Int 45:157–164

    Article  PubMed  CAS  Google Scholar 

  10. Trombe JC, Bonel G, Montel G (1968) Sur les apatites carbonatees preparees a haute temperature. Bull Soc Chim Fr (Spec. No):708–1712

  11. LeGeros RZ, Trautz OR, Klein E, LeGeros JP (1969) Two types of carbonate substitution in the apatite structure. Experientia 25:5–7

    Article  PubMed  CAS  Google Scholar 

  12. Elliott JC (1964) The crystallographic structure of dental enamel and related apatites. Ph D Thesis, University of London

  13. Herman H, Richelle L (1961) Le calcium echangeable de la substance minerale de l'os etudie a l'aide du45Ca. VII. Activite comparee de fractions d'os total de densite differente. Bull Soc Chim Biol 43:273–282

    PubMed  CAS  Google Scholar 

  14. Roufosse AH, Landis WJ, Sabine WK, Glimcher MJ (1979) Identification of brushite in newly deposited bone mineral from embryonic chicks. J Ultrastruct Res 68:235–255

    Article  PubMed  CAS  Google Scholar 

  15. Kauppinen JK, Moffatt DJ, Mantsch HH, Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl Spectrosc 35:271–276

    Article  CAS  Google Scholar 

  16. Elliott JC, Holcomb DW, Young RA (1985) Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel. Calcif Tissue Int 37:372–375

    PubMed  CAS  Google Scholar 

  17. Vignoles M (1981) Contribution a l'etude des apatites carbonatees de type B. These d'Etat. Institut National Polytechnique de Toulouse

  18. Farmer VC (ed) (1975) The infrared spectra of mineral. Mineralogical Society of London, pp 48–49, 108–109

  19. Termine JD, Posner AS (1966) Infrared determination of the percentage of crystallinity in apatitic calcium phosphates. Nature 211:268–270

    Article  PubMed  CAS  Google Scholar 

  20. Tochon-Danguy HJ (1978) Effect of fluorine on the crystallinity index of bone mineral substance. Fluoride Bone, Symp CEMO 2nd 1977, pp 73–81

  21. Bonar LC, Roufosse AH, Sabine WK, Grynpas MD, Glimcher MJ (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209

    Article  PubMed  CAS  Google Scholar 

  22. LeGeros RZ, LeGeros JP (1983) Carbonate analysis of synthetic mineral and biological apatites. IADR meeting abstracts. J Dent Res 62:259

    Google Scholar 

  23. Featherstone JDB, Pearson S, LeGeros RZ (1984) An infrared method for quantification of carbonate in carbonated apatites. Caries Res 18:63–66

    Article  PubMed  CAS  Google Scholar 

  24. Glimcher MJ, Bonar LC, Grynpas MD, Landis WJ, Roufosse AH (1981) Recent studies of bone mineral: is the amorphous calcium phosphate theory valid? J Crystal Growth 53:100–119

    Article  CAS  Google Scholar 

  25. Glimcher MJ (1984) Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bands. Phil Trans Royal Soc 304:479–508

    CAS  Google Scholar 

  26. Harris WH, Heaney RP (1969) Effect of growth hormone on skeletal mass in adult dogs. Nature 223:403–404

    Article  PubMed  CAS  Google Scholar 

  27. Harris WH, Heaney RP (1969) Skeletal renewal and metabolic bone disease. N Engl J Med 280:303–311

    Article  PubMed  CAS  Google Scholar 

  28. Bonar LC, Roufosse AH, Sabine WK, Grynpas MD, Glimcher MJ (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209

    Article  PubMed  CAS  Google Scholar 

  29. Blumenthal NC, Betts F, Posner AS (1975) Effect of carbonate and biological macromolecules on formation and properties of hydroxyapatite. Calcif Tissue Res 18:81–90

    Article  PubMed  CAS  Google Scholar 

  30. Aoba T, Moriwaki Y, Doi Y, Okazaki M, Takahashi J, Yagi T (1980) Diffuse X-ray scattering from apatite crystals and its relation to amorphous bone mineral. J Osaka Univ Dent Sch 20:81–90

    PubMed  CAS  Google Scholar 

  31. LeGeros RZ, Trautz OR, LeGeros JP, Klein E (1968) Carbonate substitution in the apatite structure. Bull Soc Chim Fr 1712–1721

  32. Heughebaert JC (1977) Contribution a l'etude de l'evolution des orthophosphates de calcium precipites amorphes en orthophosphates apatitiques. These d'Etat. Institut National Polytechnique de Toulouse

  33. Termine JD, Eanes ED, Conn KM (1980) Phosphoprotein modulation of apatite crystallization. Calcif Tissue Int 31:247–251

    Article  PubMed  CAS  Google Scholar 

  34. Blumenthal NC, Posner AS, Silverman LD, Rosenberg LC (1979) Effect of proteoglycans on in vitro hydroxapatite formation. Calcif Tissue Int 27:75–82

    Article  PubMed  CAS  Google Scholar 

  35. Boskey AL, Wians FH Jr, Hauschka PV (1985) The effect of osteocalcin on in vitro lipid-induced hydroxyapatite formation and seeded hydroxyapatite growth. Calcif Tissue Int 37:57–62

    PubMed  CAS  Google Scholar 

  36. Pellegrino ED, Biltz RM (1965) The composition of human bone in uremia. Observation on the reservoir functions of bone and demonstration of labile fraction of bone carbonate. Medicine (Baltimore) 44:397–418

    Article  CAS  Google Scholar 

  37. Neuman WF, Toribara IY, Mulryan BJ (1956) The surface chemistry of bone. IX. Carbonate phosphate exchange. J Am Chem Soc 78:4263–4272

    Article  CAS  Google Scholar 

  38. Biltz RM, Pellegrino ED, Letteri JM (1981) Skeletal carbonates and acid-base regulation. Miner Electrolyte Metab 5:1–7

    CAS  Google Scholar 

  39. Neuman WF, Mulryan BJ (1967) Synthetic hydroxyapatite crystals. III. The carbonate system. Calcif Tissue Res 1:94–104

    Article  PubMed  CAS  Google Scholar 

  40. Rey C, Lian JB, Grynpas M, Shapiro F, Zylerberg L, Glimcher MJ (1989) Non-apatitic environments in bone mineral. FT-IR detection, biological properties, and changes in several disease states. Connect Tissue Res 21:267–273

    PubMed  CAS  Google Scholar 

  41. Barroug A, Rey C, Trombe JC, Montel G (1981) Sur la preparation en milien aqueux d'une apatite carbonatee de type AB comparable a l'email dentaire. CR Acad Sci Paris 292(II):303–306

    CAS  Google Scholar 

  42. LeGeros RZ, Kijkowska G, LeGeros JP, Abergas T, Bleiwas H (1987) CO3 for OH (type A) and CO3 for PO4 (type B) substitutions in precipitated carbonate apatites. J Dent Res (abstract) 66:190

    Google Scholar 

  43. Termine JD, Lundy DR (1973) Hydroxide and carbonate in rat bone mineral and its synthetic analogues. Calcif Tissue Res 13:73–82

    Article  PubMed  CAS  Google Scholar 

  44. Biltz RM, Pellegrino ED (1971) The hydroxyl content of calcified tissue mineral. Calcif Tissue Res 7:259–263

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rey, C., Renugopalakrishman, V., Collins, B. et al. Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 49, 251–258 (1991). https://doi.org/10.1007/BF02556214

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556214

Key words

Navigation