Skip to main content
Log in

Pronase modifies synaptic transmission and activity of identifiedLymnaea neurons

  • Original Articles
  • Published:
Invertebrate Neuroscience

Abstract

Proteolytic enzymes can have significant effects on the physiological properties of neurons. Although several actions of proteolytic enzymes on the physiology of single neurons have been described, the effects of these enzymes on network properties in the central nervous system (CNS) have received less attention. The effects of bath-applied pronase (0.05%) on synaptic connections and spontaneous activity in theLymnaea CNS were examined. Brief application (i.e. 2–3 min) of pronase modified some, but not all, synapses in the CNS. For example, the chemical synapse between two interneurons, RPeD11 and RPeD1, and between the interneuron, RPeD1, and RPA motoneurons were examined. Both these synapses were either biphasic or monophasic (depolarizing) under control conditions. Pronase exposure eliminated the depolarizing phase of the RPeD11→RPeD1 synapse, but had no effect on the connection between RPeD1 and RPA neurons. In addition, the effects of pronase on electrical-coupling between two peptidergic neurons, VD1 and RPD2, in the CNS were investigated. Pronase decreased the total network input resistance and cell input resistances as well as the steady-state coupling ratio. Furthermore, exposure to pronase induced various changes (i.e. depolarization, hyperpolarization, bursting patterns and afterdischarges) in the activity pattern of different identified neurons in the CNS. Collectively, these data show that even brief exposure to a low concentration of pronase can acutely modify both synapses and neuronal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, N., Kaneda, M., Hori, N. and Krishtal, O. A. (1988) Blockade of N-methyl-d-asparate response in enzyme-treated rat hippocampal neurons.Neurosci. Lett.,87, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque, E. X., Sokoll, M. D., Sonesson, B. and Thesleff, S. (1968) Studies on the nature of the cholinergic receptor.Eur. J. Pharmacol.,4, 40–46.

    Article  PubMed  CAS  Google Scholar 

  • Allen, C. N., Brady, R., Swann, J., Hori, N. and Carpenter, D. O. (1988) N-methyl-d-aspartate (NMDA) receptors are inactivated by trypsin.Brain Res.,458, 147–50.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin, P. R. (1983) Gastropod feeding. Behavioural and neuronal analysis of a complex multicomponent system. InNeural Origin of Rhythmic Movements (Soc. Exp. Biol. Symp. 37), ed. A. Roberts and B. L. Roberts, Cambridge, Cambridge University Press, pp. 159–93.

    Google Scholar 

  • Benjamin, P. R. and Winlow, W. (1981) The distribution of three wide-acting synaptic inputs to identified neurons in the isolated brain ofLymnaea stagnalis (L.).Comp. Biochem. Physiol.,70A, 293–307.

    Article  Google Scholar 

  • Benjamin, P. R. and Pilkington, J. B. (1986) The electrotonic location of low-resistance intercellular junctions between a pair of giant neurones in the snailLymnaea.J. Physiol.,370, 111–26.

    PubMed  CAS  Google Scholar 

  • Bennett, M. V. L. (1966) Physiology of electrotonic junctions.Ann. N.Y. Acad. Sci.,157, 509–539.

    Article  Google Scholar 

  • Berry, M. S. and Pentreath, V. W. (1975) The integrative properties of electrotonic synapses.Comp. Biochem. Physiol.,57A, 589–612.

    Google Scholar 

  • Berry, M. S. and Pentreath, V. W. (1976) Criteria for distinguishing between monosynaptic and polysynaptic transmission.Brain Res.,105, 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Betz, W. and Sakmann, B. (1971) ‘Disjunction’ of frog neuromuscular synapses by treatment with proteolytic enzymes.Nature New Biol.,232, 94–95.

    Article  PubMed  CAS  Google Scholar 

  • Betz, W. and Sakmann, B. (1973) Effects of proteolytic enzymes on function and structure of frog neuromuscular junctionsJ. Physiol.,230, 673–88.

    PubMed  CAS  Google Scholar 

  • Bulloch, A. G. M. (1987). Somatostatin enhances neurite out-growth and electrical-coupling of regenerating neurons inHelisoma.Brain Res.,412, 6–17.

    Article  PubMed  CAS  Google Scholar 

  • Burger, M. M. (1969) A difference in the architecture of the surface membrane of normal and virally-transformed cells.Proc. Natl. Acad. Sci. USA,62, 994–1001.

    Article  PubMed  CAS  Google Scholar 

  • Burger, M. M. (1970) Proteolytic enzymes initiating cell division and escape from contact inhibition of growth.Nature,227, 170–71.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. F., von Baumgarten, R. and Takeda, R. (1971) Pacemaker properties of completely isolated neurones inAplysia californica.Nature New Biol.,233, 27–29.

    PubMed  CAS  Google Scholar 

  • Church, J. and Baimbridge, K. G. (1991) Exposure to high pH medium increases the incidence as extent of dye coupling between rat hippocampal CA1 pyramidal neuronsin vitro J. Neurosci.,11, 3289–3295.

    PubMed  CAS  Google Scholar 

  • Clapham, A. H., Shrier, A. and De Haan, R. L. (1980) Junctional resistance and action potential delay between embryonic heart cell aggregates.J. Gen. Physiol.,75, 633–54.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, C. J. and Benjamin, P. R. (1989) Esophageal mechanoreceptors in the feeding system of the pond snailLymnaea stagnalis.J. Neurophysiol.,61, 727–36.

    PubMed  CAS  Google Scholar 

  • Fain, J. N. and Loken, S. C. (1969) Response of trypsin-treated brown and white fat cells to hormones. Preferential inhibition of insulin action.J. Biol. Chem.,244, 3500–506.

    PubMed  CAS  Google Scholar 

  • Ferguson, G. P. and Benjamin, P. R. (1991a). The whole-body with-drawal response ofLymnaea stagnalis. I. Identification of central motoneurones and muscles.J. Exp. Biol.,158, 63–95.

    PubMed  CAS  Google Scholar 

  • Ferguson, G. P. and Benjamin, P. R. (1991b) The whole-body with-drawal response ofLymnaea stagnalis. II. Activation of central motoneurones and muscles by sensory input.J. Exp. Biol.,158, 97–116.

    PubMed  CAS  Google Scholar 

  • Gadotti, D., Bauce, L. G., Lukowiak, K. and Bulloch, A. G. M. (1986) Transient depletion of seretonin in the nervous system ofHelisoma.J. Neurobiol.,17, 431–47.

    Article  PubMed  CAS  Google Scholar 

  • Getting, P. A. and Willows, A. O. D. (1974) Modification of neuron properties by electronic synapses. II. Burst formation by electrotonic synapses.J. Neurophysiol.,37, 858–68.

    PubMed  CAS  Google Scholar 

  • Gu, Q. and Moss, R. L. (1996) 17b-estradiol potentiates kainate-induced currents via activation of the cAMP cascade.J. Neurosci.,16, 3620–29.

    PubMed  CAS  Google Scholar 

  • Hall, Z.W. and Kelly, R.B. (1971) Enzymatic detachment of end-plate acetylcholinesterase from muscle.Nature New Biol.,232, 62–63.

    PubMed  CAS  Google Scholar 

  • Hermann, P. M., Ter Maat, A. and Jansen, R. F. (1994) The neural control of egg-laying behaviour in the pond snailLymnaea stagnalis: motor control of shell turning.J. Exp. Biol.,197, 79–99.

    PubMed  Google Scholar 

  • Hermann, P. M., Lukowiak, K., Wildering, W. C. and Bulloch, A. G. M. (1997a) Pronase acutely modifies high-voltage-activated Ca2+ current and integrative properties ofLymnaea neurons.Eur. J. Neurosci.,9, 2624–33.

    Article  PubMed  CAS  Google Scholar 

  • Hermann, P. M., De Lange, R. P. J., Pieneman, A. W., Ter Maat, A. and Jansen, R. F. (1997b) The role of neuropeptides encoded on the CDCH-1 gene in the organization of egg-laying behavior in the pond snailLymnaea stagnalis.J. Neurophysiol.,78, 2859–69.

    PubMed  CAS  Google Scholar 

  • Inoue, T., Takasaki, M., Lukowiak, K. and Syed, N. I. (1996) Inhibition of the respiratory pattern generating neurons by an identified whole body withdrawal interneuron ofLymnaea stagnalis.J. Exp. Biol.,199 1887–98.

    PubMed  Google Scholar 

  • Johnson, B. D. and Byerly, L. (1993) A cytoskeletal mechanism for Ca2+ channel metabolic dependence and inactivation by intracellular Ca2+.Neuron,10, 797–804.

    Article  PubMed  CAS  Google Scholar 

  • Kono, T. (1969) Destruction of insulin effector system of adipose tissue cells by proteolytic enzymes.J. Biol. Chem.,244, 1772–78.

    PubMed  CAS  Google Scholar 

  • Lee, K. S., Akaike, N. and Brown, A. M. (1977) Trypsin inhibits the action of tetrodotoxin on neurones.Nature,265, 751–53.

    Article  PubMed  CAS  Google Scholar 

  • Li, K. W., Geraerts, W. P. M. and Joosse, J. (1992) Purification and chemical characterization of caudodorsal cell hormone-II from the egg-laying controlling caudodorsal cells ofLymnaea stagnalis.Peptides,13, 215–20.

    Article  PubMed  CAS  Google Scholar 

  • Magoski, N. S., Syed, N. I. and Bulloch, A. G. M. (1994) A neuronal network from the molluscLymnaea stagnalis.Brain Res.,645, 201–14.

    Article  PubMed  CAS  Google Scholar 

  • Magoski, N. S. and Bulloch, A. G. M. (1995) Plasticity of the sign of synaptic transmission between interneurons from the molluscLymnaea stagnalis.Soc. Neurosci. Abstr.,21, 168.

    Google Scholar 

  • Moroz, L. L., Park J.-H. and Winlow, W. (1993) Nitric oxide activates buccal motor patterns inLymnaea stagnalis.Neuroreport,4, 643–46.

    Article  PubMed  CAS  Google Scholar 

  • Norekian, T. P. and Satterlie, R. A. (1995) An identified cerebral interneuron initiates different elements of prey capture behavior in the pteropod mollusc,Clione limacina.Invertebrate Neurosci.,1, 235–48.

    Article  CAS  Google Scholar 

  • Park, J.-H. and Winlow, W. (1993) Variant synaptic connections in the respiratory central pattern generator in semi-intact preparations ofLymnaea. J. Physiol.,473, 198P.

    Google Scholar 

  • Poste, G. (1971) Tissue dissociation with proteolytic enzymes. Adsorption and activity of enzymes at the cell surface.Exp. Cell Res.,65, 359–67.

    Article  PubMed  CAS  Google Scholar 

  • Rodbell, M., Birnbaumer, L. and Pohl, S. L. (1970) Adenyl cyclase in fat cells. III. Stimulation by secretin and the effects of trypsin on the receptors for lipolytic hormones.J. Biol. Chem.,245, 718–22.

    PubMed  CAS  Google Scholar 

  • Roubos, E. W. and Van Heumen, W. R. A. (1994) Peptide processing and release by the neuroendocrine cells ofLymnaea stagnalis during an egg laying cycle.Brain Res.,644, 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Sefton, B. M. and Rubin, H. (1970) Release from density-dependent growth inhibition by proteolytic enzymes.Nature,227, 843–45.

    Article  PubMed  CAS  Google Scholar 

  • Sketelj, J. and Brzin, M. (1977) Increase in the apparent AChE activity in the mouse diaphragm induced by proteolytic treatment.J. Neurochem.,29, 109–14.

    Article  PubMed  CAS  Google Scholar 

  • Small, D. L. and Morris, C. E. (1995) Pore properties ofLymnaea stagnalis neuron stretch-activated K+ channelsJ. Exp. Biol.,198, 1919–29.

    PubMed  CAS  Google Scholar 

  • Soffe, S. R. and Benjamin, P. R. (1980) Morphology of two-electrotonically-coupled giant neurosecretory neurons in the snailLymnaea stagnalis Comp. Biochem. Physiol.,67A, 35–46.

    Article  Google Scholar 

  • Sokal, R. R. and Rohlf, F. J. (1981)Biometry, San Francisco: W.H. Freeman and Co.

    Google Scholar 

  • Spencer, G. E. and Winlow, W. (1994) Variant synaptic connections of an identified peptidergic neurone ofLymnaea stagnalis. J. Physiol.,475, 150P.

    Google Scholar 

  • Syed, N. I. and Winlow, W. (1991a) Respiratory behavior in the pond snailLymnaea stagnalis. I. Behavioral analysis and the identification of motor neurons.J. Comp. Physiol. A,169 541–55.

    Google Scholar 

  • Syed, N. I. and Winlow, W. (1991b) Respiratory behavior in the pond snailLymnaea stagnalis. II. Neural elements of the central pattern generator (CPG).J. Comp. Physiol. A,169, 557–68.

    Google Scholar 

  • Ter Maat A., Lodder, J. C. and Wilbrink, M. (1983) Induction of egg-laying in the pond snailLymnaea stagnalis by environmental stimulation of the release of ovulation hormone from the caudo-dorsal cells.Int. J. Invert. Reprod.,6, 239–47.

    Google Scholar 

  • Ter Maat, A., Dijcks, F. A. and Bos, N. P. A. (1986).In vivo recordings of neuroendocrine cells (Caudo-Dorsal cells) in the pond snail.J. Comp. Physiol. A,158, 853–59.

    Article  Google Scholar 

  • Trudeau, L. and Castellucci, V. F. (1995) Postsynaptic modifications in long-term facilitation inAplysia: upregulation of excitatory amino acid receptors.J. Neurosci.,15, 1275–84.

    PubMed  CAS  Google Scholar 

  • Wildering, W. C. and Janse, C. (1992) Serotonergic modulation of junctional conductance in an identified pair of neurons in the molluscLymnaea stagnalis.Brain Res.,595, 343–52.

    Article  PubMed  CAS  Google Scholar 

  • Winer, B. J., Brown, D. R. and Michels, K. M. (1991)Statistical Principles in Experimental Design. New York: McGraw-Hill.

    Google Scholar 

  • Winlow, W., Haydon, P. G. and Benjamin, P. R. (1981) Multiple postsynaptic actions of the giant dopamine-containing neuron RPeD1 ofLymnaea stagnalis J. Exp. Biol.,94, 137–148.

    CAS  Google Scholar 

  • Winlow, W. and Haydon, P. G. (1986) A behavioral and neuronal analysis of the locomotory system ofLymnaea stagnalis Comp. Biochem. Physiol.,83A, 13–21.

    Article  Google Scholar 

  • Yamada, N. and Bilkey, D. K. (1993) Induction of trypsin-induced hyperexcitability in the rat hippocampal slice is blocked by the N-methyl-d-aspartate receptor antagonist, MK-801.Brain Res.,624, 336–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. M. Bulloch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermann, P.M., Bulloch, A.G.M. Pronase modifies synaptic transmission and activity of identifiedLymnaea neurons. Invertebrate Neuroscience 3, 295–304 (1998). https://doi.org/10.1007/BF02577689

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02577689

Key Words

Navigation