Skip to main content
Log in

Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Dissociated normal mammary epithelial cells from prelactating mice were plated on different substrates in various medium-serum-hormone combinations to find conditions that would permit maintenance of morphological differentiation. Cells cultured on floating collagen membranes in medium containing insulin, hydrocortisone and prolactin maintain differentiation through 1 month in culture. The surface cells form a continuous epithelial pavement. Some epithelial cells below the surface layer rearrange themselves to form alveolus-like structures. Cells at both sites display surface polarization; microvilli and tight junctions are present at their medium-facing or luminal surface and a basal lamina separates the epithelial components from the gel and stromal cells. Occasinal myoepithelial cells, characterized by myofilaments and plasmalemmal vesicles, are identified at the basal surface of the secretory epithelium. In contrast, cells cultured on plastic, glass or collagen gels attached to Petri dishes form a confluent epithelial sheet showing surface polarization, but lose secretory and myoepithelial specializations. If these dedifferentiated cells are subsequently maintained on floating collagen membranes, they redifferentiate. There is little DNA synthesis in cells on collagen gels, in contrast to Petri-dish controls. Protein synthesis in cells on floating collagen membranes increases over T0 values and remains constant through 7 days in culture whereas it decreases on attached gels; however, if the gels are freed to float, protein synthesis increases sharply and parallels that seen on floating membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saacke, R. G., and C. W. Heald. 1974. Cytological aspects of milk formation and secretion. In: B. L. Larson, and V. R. Smith (Eds.),Lactation—A Comprehensive Treatise. Vol. 2. Academic Press, New York, pp. 147–189.

    Google Scholar 

  2. Forsyth, I. A., and E. A. Jones. 1976. In: M. Balls, and M. A. Monnickendam (Eds.),Organ Culture in Biomedical Research. (British Society for Cell Biology Symposium 1). Cambridge University Press, Cambridge, London, New York, Melbourne, pp. 201–221.

    Google Scholar 

  3. Lasfargues, E. Y.. 1957. Cultivation and behaviorin vitro of the normal mammary epithelium of the adult mouse. Anat. Rec. 127: 117–130.

    Article  PubMed  CAS  Google Scholar 

  4. Daniel, C. W., and K. B. DeOme. 1965. Growth of mouse mammary glandsin vivo after monolayer culture. Science 149: 634–636.

    Article  PubMed  CAS  Google Scholar 

  5. Das, N. K., H. L. Hosick, and S. Nandi. 1974. Influence of seeding density on multicellular organization and nuclear events in cultures of normal and neoplastic mouse mammary epithelium. J. Natl. Cancer Inst. 52: 849–861.

    PubMed  CAS  Google Scholar 

  6. Pickett, P. B., D. R. Pitelka, S. T. Hamamoto, and D. S. Misfeldt. 1975. Occluding junctions and cell behavior in primary cultures of normal and neoplastic mammary gland cells. J. Cell Biol. 66: 316–332.

    Article  PubMed  CAS  Google Scholar 

  7. Weipjes, G. J., and F. J. A. Prop. 1970. Improved method for preparation of single cell suspensions from mammary glands of adult virgin mouse. Exp. Cell Res. 61: 451–454.

    Article  Google Scholar 

  8. Cohen, L. A., J. Tsuang, and P. C. Chan. 1974. Characteristics of rat normal mammary epithelial cells and dimethylbenzanthracene-induced mammary adenocarcinoma cells grown in monolayer culture. In Vitro 10: 51–62.

    Article  PubMed  CAS  Google Scholar 

  9. Flaxman, B. A. 1973.In vitro studies of the human mammary gland: effect of hormones on proliferation in primary cell cultures. J. Invest. Dermatol. 61: 67–71.

    Article  PubMed  CAS  Google Scholar 

  10. Buehring, G. C. 1972. Cultures of human mammary epithelial cells: keeping abreast with a new method. J. Natl. Cancer Inst. 49: 1433–1434.

    PubMed  CAS  Google Scholar 

  11. Ebner, K. E., E. C. Hageman, and B. L. Larson. 1961. Functional biochemical changes in bovine mammary cell cultures. Exp. Cell Res. 25: 555–570.

    Article  PubMed  CAS  Google Scholar 

  12. Andersen, C. R., and B. L. Larson. 1970. Comparative maintenance of function in dispersed cell and organ cultures of bovine mammary tissue. Exp. Cell Res. 61: 24–30.

    Article  PubMed  CAS  Google Scholar 

  13. Feldman, M. K. 1971.De novo synthesis of casein and proteins in cell cultures of mouse mammary epithelial cells. Am. Zool. 11: 677.

    Google Scholar 

  14. Ceriani, R. L. 1976. Hormone induction of specific protein synthesis in midpregnant mouse mammary cell culture. J. Exp. Zool. 196: 1–12.

    Article  PubMed  CAS  Google Scholar 

  15. Guillouzo, A., P. Oudea, Y. LeGuilly, M. C. Oudea, P. Lenoir, and M. Bourel. 1972. An ultrastructural study of primary cultures of adult human liver tissue. Exp. Mol. Pathol. 16: 1–15.

    Article  PubMed  CAS  Google Scholar 

  16. Lambiotte, M., A. Vornbrodt, and E. L. Benedetti. 1973. Expression of differentiation of rat foetal hepatocytes in cellular culture under the action of glucocorticoids: appearance of bile canaliculi. Cell Differ. 2: 43–53.

    Article  PubMed  CAS  Google Scholar 

  17. Chapman, G. S., A. L. Jones, U. A. Meyer, and D. M. Bissell. 1973. Parenchymal cells from adult rat liver in nonproliferating monolayer culture. II. Ultrastructural studies. J. Cell Biol. 59: 735–747.

    Article  PubMed  CAS  Google Scholar 

  18. Kerkof, P. R., P. F. Long, and I. L. Chaikoff. 1964.In vitro effects of thyrotropic hormone. I. On the pattern of organization of monolayer cultures of isolated sheep thyroid gland cells. Endocrinology. 74: 170–179.

    Article  PubMed  CAS  Google Scholar 

  19. Fayet, G., M. Michel-Béchet, and S. Lissitsky. 1971. Thyrotrophin-induced aggregation and reorganization into follicles of isolated procine thyroid cells in culture. 2. Ultrastructural studies. Eur. J. Biochem. 24: 100–111.

    Article  PubMed  CAS  Google Scholar 

  20. Lissitsky, G., G. Fayet, A. Giraud, B. Verrier, and J. Torresani. 1971. Thyrotropin-induced aggregation and reorganization into follicles of isolated porcine thyroid cells. I. Mechanism of action of thyrotrophin and metabolic properties. Eur. J. Biochem. 24: 88–99.

    Article  Google Scholar 

  21. Michalopoulos, G., and H. C. Pitot. 1975. Primary cultures of parenchymal liver cells on collagen membranes. Exp. Cell Res. 94: 70–78.

    Article  PubMed  CAS  Google Scholar 

  22. Emerman, J. T., and D. R. Pitelka. 1976. Maintenance of cytodifferentiation of dissociated mammary epithelial cells on floating collagen membranes (abstr.). In Vitro 12: 329.

    Google Scholar 

  23. Bornstein, M. B. 1958. Reconstituted rat-tail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab. Invest. 7: 134–137.

    PubMed  CAS  Google Scholar 

  24. Lasfargues, E. Y., and D. H. Moore. 1971. A method for the continuous cultivation of mammary epithelium. In Vitro 7: 21–25.

    Article  PubMed  CAS  Google Scholar 

  25. Karnovsky, M. J. 1965. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27 (2, Pt. 2): 137a-138a.

    Google Scholar 

  26. Elsdale, T., and J. Bard. 1972. Collagen substratum for studies on cell behavior. J. Cell Biol. 54: 626–637.

    Article  PubMed  CAS  Google Scholar 

  27. Hinegardner, R. T. 1971. An improved fluorometric assay for DNA. Anal. Biochem. 39: 197–201.

    Article  PubMed  CAS  Google Scholar 

  28. Leighton, J., J. Z. Brada, L. W. Estes, and G. Justh. 1969. Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney. Science 163: 472–473.

    Article  PubMed  CAS  Google Scholar 

  29. Auersperg, N. 1969. Histogenetic behavior of tumors. 1. Morphologic variationin vitro andin vivo of two related human carcinoma cell lines. J. Natl. Cancer Inst. 43: 151–173.

    PubMed  CAS  Google Scholar 

  30. McGrath, C. M., and P. B. Blair. 1970. Immuno-fluorescent localization of mammary tumor virus antigens in mammary tumor cells in culture. Cancer Res. 30: 1963–1968.

    PubMed  CAS  Google Scholar 

  31. Owens, R. B., and A. J. Hackett. 1972. Tissue culture studies of mouse mammary tumor cells and associated viruses. J. Natl. Cancer Inst. 49: 1321–1332.

    PubMed  CAS  Google Scholar 

  32. Enami, J., S. Nandi, and S. Haslam. 1973. Production of three-dimensional structures—“domes”—from dissociated mammary epithelial cells. In Vitro 8: 405.

    Google Scholar 

  33. Wellings, S. R. 1969. Ultrastructural basis of lactogenesis. In: M. Reynolds, and S. J. Folley (Eds.),Lactogenesis: The Initiation of Milk Secretion at Parturition. University of Pennsylvania Press, Philadelphia, pp. 5–25.

    Google Scholar 

  34. Wellings, S. R., R. A. Cooper, and E. M. Rivera. 1966. Electron microscopy of induced secretion in organ culture of mammary tissue of the C3H/Crgl mouse. J. Natl. Cancer Inst. 36: 657–672.

    PubMed  CAS  Google Scholar 

  35. Mills, E. S., and Y. J. Topper. 1970. Some ultrastructural effects of insulin, hydrocortisone, and prolactin on mammary gland explants. J. Cell Biol. 44: 310–328.

    Article  PubMed  CAS  Google Scholar 

  36. Wellings, S. R., and K. B. DeOme. 1963. Electron microscopy of milk secretion in the mammary gland of the C3H/Crgl mouse. III Cytomorphology of the involuting gland. J. Natl. Cancer Inst. 30: 241–267.

    PubMed  CAS  Google Scholar 

  37. Chatterton, R. T., Jr., J. A. Harris, and R. M. Wynn. 1975. Lactogenesis in the rat: an ultrastructural study of the initiation of the secretory process. J. Repord. Fertil. 43: 479–484.

    Article  CAS  Google Scholar 

  38. Ollivier-Bousquet, M., and R. Denamur. 1975. Effet de l'état physiologique et du 3′5′ adénoside monophosphate cyclique sur le transit intracellulaire et l'excrétion du protéines du lait. Étude autoradiographique en microscopie électronique. J. Microsc. Biol. Cell. 23: 63–82.

    CAS  Google Scholar 

  39. Middleton, C. A. 1973. The control of epithelial cell locomotion in tissue culture. In:Ciba Foundation Symposium 14, Locomotion of Tissue Cells. Associated Scientific Publishers, Amsterdam, pp. 251–262.

    Chapter  Google Scholar 

  40. Orci, L., A. A. Like, M. Amherdt, B. Blondel, Y. Kanazawa, E. B. Marliss, A. E. Lambert, C. B. Wollheim, and A. E. Renold. 1973. Monolayer cell culture of neonatal rat pancreas: an ultrastructural and biochemical study of functioning endocrine cells. J. Ultrastruct. Res. 43: 270–297.

    Article  PubMed  CAS  Google Scholar 

  41. Misfeldt, D. S., S. T. Hamamoto, and D. R. Pitelka. 1976. Transepithelial transport in cell culture. Proc. Natl. Acad. Sci. U.S.A. 73: 1212–1216.

    Article  PubMed  CAS  Google Scholar 

  42. Shen, S. S., S. T. Hamamoto, and D. R. Pitelka. 1976. An electrophysiological study of coupling between cultured cells of the mouse mammary gland in five distinct physiological states. J. Membr. Biol. 29: 373–382.

    Article  PubMed  CAS  Google Scholar 

  43. Fleischmajer, R., and R. E. Billingham (Eds.). 1968.Epithelial-Mesenchymal Interactions. Williams and Wilkins Co., Baltimore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was supported by USPHS Grants CA-05388 and CA-05045 from the National Cancer Institute, DHEW.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerman, J.T., Pitelka, D.R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13, 316–328 (1977). https://doi.org/10.1007/BF02616178

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02616178

Key words

Navigation