Skip to main content
Log in

Effects of transforming growth factor β on growth of human mammary epithelial cells in culture

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Normal human mammary epithelial cells (HMEC) from different individual reduction mammoplasty specimens were all growth inhibited, and showed a flattened, elongated morphology in response to human recombinant transforming growth factor β1 (TGFβ). The degree of growth inhibition varied among specimens, but none of the normal HMEC maintained growth in the continued presence of TGFβ. The degree of growth inhibition also varied with cell age in vitro, cells closer to senescence being more sensitive. TGFβ sensitivity was additionally assayed in two established cell lines derived from one of the reduction mammoplasty specimens after exposure to benzo(a)pyrene. Although varying degrees of growth inhibition and morphologic changes were observed in the cell lines, both lines contained populations that maintained active growth in the presence of TGFβ. Subclones of these lines demonstrated a great plasticity in their growth response to TGFβ, with individual clones ranging from strongly growth inhibited to nearly unaffected. These results suggest that multiple factors influence the extent of TGFβ-induced growth effects on both normal and transformed mammary epithelial cells, and that some of these factors may act through epigenetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheifetz, S.; Weatherbee, J. A.; Tsang-S, M. L. The transforming growth factor-β system, a complex pattern of cross-reactive ligands and receptors. Cell. 48:409–415; 1987.

    Article  PubMed  CAS  Google Scholar 

  2. Clark, R.; Stampfer, M.; Milley, B., et al. Transformation of human mammary epithelial cells by oncogenic retroviruses. Cancer Res. 48:4689–4694; 1988.

    PubMed  CAS  Google Scholar 

  3. Coffey, R. J.; Bascom, C. C.; Sipes, N. J., et al. Growth modulation of mouse keratinocytes by transforming growth factors. Cancer Res. 48:1596–1602; 1988.

    PubMed  CAS  Google Scholar 

  4. Fernandez-Pol, J. A.; Klos, D. J.; Hamilton, P. D., et al. Modulation of epidermal growth factor receptor gene expression by transforming growth factor-β in a human breast carcinoma cell line. Cancer Res. 47:4260–4265; 1987.

    PubMed  CAS  Google Scholar 

  5. Hammond, S. L.; Ham, R. G.; Stampfer, M. R. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl. Acad. Sci. USA 81:5435–5439; 1984.

    Article  PubMed  CAS  Google Scholar 

  6. Holley, R. W.; Armour, R.; Baldwin, H. J., et al. Activity of a kidney epithelial cell growth inhibitor on lung and mammary cells. Cell Biol. Int. Rep. 7:141–147; 1983.

    Article  PubMed  CAS  Google Scholar 

  7. Holley, R. W.; Bohlen, P.; Fava, R., et al. Purification of kidney epithelial cell growth inhibitors. Proc. Natl. Acad. Sci. USA 77:5989–5992; 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Ignotz, R. A.; Endo, T.; Massague, J. Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor-β. J. Biol. Chem. 262:6443–6446; 1987.

    PubMed  CAS  Google Scholar 

  9. Jetten, A. M.; Shirley, J. E.; Stoner, G. Regulation of proliferation and differentiation of respiratory tract epithelial cells by TGFβ. Exp. Cell Res. 167:539–549; 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Lund, L. R.; Riccio, A.; Andreasen, P. A., et al. Transforming growth factor-β is a strong and fast positive regulator of the level of type-1 plasminogen activator inhibitor mRNA in WI-38 human lung fibroblasts. EMBO J. 6:1281–1286; 1987.

    PubMed  CAS  Google Scholar 

  11. Massague, J. The TGF-β family of growth and differentiation factors. Cell. 49:437–438; 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Masui, T.; Wakefield, L. M.; Lechner, J. F., et al. Type β transforming factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial. Proc. Natl. Acad. Sci. USA 83:2438–2442; 1986.

    Article  PubMed  CAS  Google Scholar 

  13. McMahon, J. B.; Richard, W. L.; del Campo, A. A., et al. Differential effects of transforming growth factor-β on proliferation of normal and malignant rat liver epithelial cells. Cancer Res. 46:4665–4671; 1986.

    PubMed  CAS  Google Scholar 

  14. Roberts, A. B.; Anzano, M. A.; Lamb, L. C., et al. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc. Natl. Acad. Sci. USA 78:5339–5343; 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Roberts, A. B.; Anzano, M. A.; Wakefield, L. M., et al. Type β transforming growth factor: a bifunctional regulator of cellular growth. Proc. Natl. Acad. Sci. USA 82:119–123; 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Roberts, A. B.; Sporn, M. B.; Assoian, R. K., et al. Transforming growth factor type-beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA 83:4167–4171; 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Shipley, G. D.; Pittelkow, M. R.; Wille, J. J., et al. Reversible inhibition of normal human prokeratinocyte proliferation by type β transforming growth factor-growth inhibitor in serum-free medium. Cancer Res. 46:2608–2071; 1986.

    Google Scholar 

  18. Silberstein, G. B.; Daniel, C. W. Reversible inhibition of mammary gland growth by transforming growth factor-β. Science. 237:291–293; 1987.

    Article  PubMed  CAS  Google Scholar 

  19. Sporn, M. B.; Roberts, A. B.; Wakefield, L. M., et al. Some recent advances in the chemistry and biology of transforming growth factor-beta. J. Cell. Biol. 105:1039–1045; 1987.

    Article  PubMed  CAS  Google Scholar 

  20. Stampfer, M. R. Cholera toxin stimulation of human mammary epithelial cells in culture. In Vitro 18:531–537; 1982.

    PubMed  CAS  Google Scholar 

  21. Stampfer, M. R. Isolation and growth of human mammary epithelial cells. J. Tissue Cult. Methods 9:107–116; 1985.

    Article  Google Scholar 

  22. Stampfer, M.; Alhadeff, M.; Prosen, D., et al. Effects of transforming growth factor β on human mammary epithelial cells in culture. J. Cell Biochem. 13B(Suppl):97; 1989.

    Google Scholar 

  23. Stampfer, M. R.; Bartley, J. C. Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo(a)pyrene. Proc. Natl. Acad. Sci. USA 82:2394–2398; 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Stampfer, M. R.; Bartley, J. C. Human mammary epithelial cells in culture: differentiation and transformation. In: Dickson, R. B.; Lippman, M. E.; Norwall, M. A. eds Breast cancer: cellular and molecular biology, Norwall: Kluwer Academic Publishers; 1988:1–24.

    Google Scholar 

  25. Takehara, K.; LeRoy, C.; Grotendorst, G. R. TGF-β inhibition of endothelial cell proliferation: alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell 49:415–422; 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Tucker, R. F.; Shipley, G. D.; Moses, H. L., et al. Growth inhibitor from BSC-1 cells closely related to the platelet type beta transforming growth factor. Science 226:705–707; 1984.

    Article  PubMed  CAS  Google Scholar 

  27. Valverius, E.; Bates, S. E.; Stampfer, M. R., et al. Transforming growth factor alpha production and EGF receptor expression in normal and oncogene transformed human mammary epithelial cells. Mol. Endocrinol. 3:203–214; 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Valverius, E.; Walker-Jones, E.; Bates, S. E., et al. Inhibition of human breast epithelial cells with transforming growth factor β and desensitization by oncogene mediated transformation. Proc. Am. Assoc. Cancer Res. 29:249; 1988.

    Google Scholar 

  29. Wakefield, L. M.; Smith, D. M.; Masui, T., et al. Distribution and modulation of the cellular receptor for transforming growth factor-beta. J. Cell Biol. 105:965–975; 1987.

    Article  PubMed  CAS  Google Scholar 

  30. Wallen, K.; Stampfer, M. R. Chromosome analyses of human mammary epithelial cells at stages of chemically-induced transformation progression to immortality. Cancer Gen. Cyto. 37:249–261; 1989.

    Article  Google Scholar 

  31. Wilkner, N. E.; Persichitte, K. A.; Baskin, J. B., et al. Transforming growth factor-β stimulates the expression of fibronectin by human keratinocytes. J. Invest. Dermatol. 91:207–212; 1988.

    Article  Google Scholar 

  32. Wollenberg, G. K.; Semple, E.; Quinn, B. A., et al. Inhibition of proliferation of normal preneoplastic, and neoplastic rat hepatocytes by transforming growth factor-β. Cancer Res. 47:6595–6599; 1987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by CA24844 from the National Institutes of Health, Bethesda, MD, and the Office of Energy Research, Office of Health and Environmental Research of the U.S. Department of Energy under contract DE-AC03-76SF00098.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosobuchi, M., Stampfer, M.R. Effects of transforming growth factor β on growth of human mammary epithelial cells in culture. In Vitro Cell Dev Biol 25, 705–713 (1989). https://doi.org/10.1007/BF02623723

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623723

Key words

Navigation