Skip to main content
Log in

Measurement of gap junctional communication by fluorescence activated cell sorting

  • Growth, Differentiation, And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Cell-to-cell communication via gap junctions has played a fundamental role in the orderly development of multicellular organisms. Current methods for measuring this function apply mostly to homotypic cell populations. The newly introduced Fluorescence Activated Cell Sorting (FACS) method, albeit with some limitations, is simple, reliable, and quantitative in measuring the dye transfer via gap junctions in both homotypic and heterotypic cell populations. In the homotypic setting, the result in dye transfer from the FACS method is comparable to the scrape-loading and microinjection methods. Using this FACS method, we observed a decline of cell-to-cell communication in transformed and cancer cells. We also observed a differential degree of communication between two heterotypic cell populations depending on the direction of dye transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, M. M.; Sheridan, J. D. Altered junctional permeability between cells transformed by v-ras, v-mos, or v-src. Am. J. Physiol. 255:C674-C683; 1988.

    PubMed  CAS  Google Scholar 

  2. Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by guanidinium thiocyanate-phenol chloroform extraction. Anal. Biochem. 162:156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Dookwah, H. D.; Barhoumi, R.; Narasimhan, T. R., et al. Gap junctions in myometrial cell cultures: evidence for modulation by cyclic adenosine 3′:5′-monophosphate. Biol. Reprod. 47:397–407; 1992.

    Article  PubMed  CAS  Google Scholar 

  4. El-Fouly, M. H.; Troski, J. E.; Chang, C.-C. Scrape-loading and dye transfer: a rapid and simple technique to study gap junctional intercellular communication. Exp. Cell Res. 168:422–430; 1987.

    Article  PubMed  CAS  Google Scholar 

  5. El-Sabban, M. E.; Pauli, B. U. Cytoplasmic dye transfer between meta-static tumor cells and vascular endothelium. J. Cell Biol. 115:1375–1382; 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Fentiman, I. S.; Hurst, J.; Ceriani, R. L., et al. Junctional intercellular communication pattern of cultured human breast cancer cells. Cancer Res. 39:4739–4743; 1979.

    PubMed  CAS  Google Scholar 

  7. Harris, H.; Miller, O. J.; Klein, G., et al. Suppression of malignancy by cell fusion. Nature 223:363–368; 1969.

    Article  PubMed  CAS  Google Scholar 

  8. Kiang, D. T.; King, M.; Zhang, H.-J., et al. Cyclic biological expression in mouse mammary tumors. Science 216:68–70; 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Kiang, D. T.; Atkinson, M. M.; Lin, H. H., et al. Role of cyclic-AMP in modulating gap-junction function in a mouse mammary tumor model. Proc. Am. Assoc. Cancer Res. 34:247; 1993.

    Google Scholar 

  10. Loewenstein, W. R. Junctional intercellular communication and the control of growth. Biochim. Biophys. Acta 560:1–65; 1979.

    PubMed  CAS  Google Scholar 

  11. Mehta, P. P.; Hotz-Wagenblatt, A.; Rose, B., et al. Incorporation of the gene for a cell-cell channel protein into transformed cells leads to normalization of growth. J. Membr. Biol. 124:207–225; 1991.

    Article  PubMed  CAS  Google Scholar 

  12. Mehta, P. P.; Loewenstein, W. R. Differential regulation of communication by retinoic acid in homologous and heterologous junctions between normal and transformed cells. J. Cell Biol. 113:371–379; 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Nicolson, G. L.; Dulski, K. M.; Trosko, J. E. Loss of intercellular junctional communication correlates with metastatic potential in mammary adenocarcinoma cells. Proc. Natl. Acad. Sci. USA 85:473–476; 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Rogers, M.; Berestecky, J.; Hossain, M. Z., et al. Retinoid-enhanced gap junctional communication is achieved by increased levels of connexin43 mRNA and protein. Mol. Carcinog. 3:335–343; 1990.

    Article  PubMed  CAS  Google Scholar 

  15. Roseng, L. E.; Rivedal, E.; Sanner, T. Effect of cAMP elevating compounds on inhibition of gap junctional communication and induction of morphological transformation in Syrian hamster embryo cells. Carcinogenesis 13:1803–1809; 1992.

    Article  PubMed  CAS  Google Scholar 

  16. Tlsty, T. D.; White, A.; Sanchez, J. Suppression of gene amplification in human cell hybrids. Science 255:1425–1427; 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Tomasetto, C.; Neveu, M. J.; Daley, J., et al. Specificity of gap junction communication among human mammary cells and connexin transfectants in culture. J. Cell Biol. 122:157–167; 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Wade, M. H.; Trosko, J. E.; Schindler, M. A fluorescence photo-bleaching assay of gap junction-mediated communication between human cells. Science 232:429–552; 1986.

    Article  Google Scholar 

  19. Yamasaki, H.; Hollstein, M.; Mesnil, M., et al. Selective lack of intercellular communication between transformed and nontransformed cells as a common property of chemical and oncogene transformation of BALB/c 3T3 cells. Cancer Res. 47:5658–5664; 1987.

    PubMed  CAS  Google Scholar 

  20. Yamasaki, H.; Katoh, F. Further evidence for the involvement of gap-junctional intercellular communication in induction and maintenance of transformed foci in BALB/c 3T3 cells. Cancer Res. 48:3490–3495; 1988.

    PubMed  CAS  Google Scholar 

  21. Zajchowski, D. A.; Band, V.; Trask, D. K., et al. Suppression of tumor-forming ability and related traits in MCF-7 human breast cancer cells by fusion with immortal mammary epithelial cells. Proc. Natl. Acad. Sci. USA 87:2314–2318; 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang, L.-X.; Cooney, R. V.; Bertram, J. S. Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: relationship to their cancer chemopreventive action. Carcinogenesis 12:2109–2114; 1991.

    Article  PubMed  CAS  Google Scholar 

  23. Zhu, D.; Caveney, S.; Kidder, G. M., et al. Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc. Natl. Acad. Sci. USA 88:1883–1887; 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiang, D.T., Kollander, R., Lin, H.H. et al. Measurement of gap junctional communication by fluorescence activated cell sorting. In Vitro Cell Dev Biol - Animal 30, 796–802 (1994). https://doi.org/10.1007/BF02631304

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631304

Key words

Navigation