Skip to main content
Log in

A rapid means of sex identification inSilene latifolia by use of flow cytometry

  • Protocols
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Sex identification in dioecious plants using nonflowering material would have broad applications in both basic and applied research. We present a method using flow cytometry for diagnosing the sex of the dioecious speciesSilene latifolia Poiret (Caryophyllaceae) by means of sexual differences in nuclear DNA content and base-pair composition. Males have a significantly larger genome, attributable to the known sex-chromosome heteromorphism. Males and females also differ in the AT/GC composition, attributable to differences in non-recombining portions of the sex chromosomes. The two measures enable assignment of individuals to sex with a combined error rate of 9%. These results forS. latifolia indicate useful directions for future research into sex diagnostics for other dioecious species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CRBC:

chicken red blood cells

ddH2O:

double-distilled H2O; abbreviations of several stock solutions are defined inSolutions Required

References

  • Alexander, H. M. and J. Antonovics. 1988. Disease spread and population dynamics of anther smut infection ofSilene alba caused by the fungusUstilago violacea. J. Ecol. 76: 91–104.

    Article  Google Scholar 

  • Arumuganathan, K. and E. D. Earle. 1991. Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol. Biol. Rep. 9: 217–229.

    Google Scholar 

  • Baker, H. G. 1947. Infection of species ofMelandrium byUstilago violacea and the transmission of the resultant disease. Ann. Bot. 11: 333–348.

    Google Scholar 

  • Bell, G. 1985. On the function of flowers. Proc. Roy. Soc. Lond. B 224: 223–265.

    Article  Google Scholar 

  • Charlesworth, B. 1991. The evolution of sex chromosomes. Science 251: 1030–1033.

    Article  PubMed  CAS  Google Scholar 

  • Ciupercescu, D. D., J. Veuskens, A. Mouras, D. Ye, M. Briquet and I. Negrutiu. 1990. KaryotypingMelandrium album, a dioecious plant with heteromorphic sex chromosomes. Genome 33: 556–562.

    CAS  Google Scholar 

  • Costich, D. E. 1989. The ecology of breeding-system variation inEcballium elaterium (L.) A. Rich. Ph.D. thesis, University of Iowa.

  • Costich, D. E., T. R. Meagher and K. Arumuganathan, manuscript in prep.

  • Delph, L. F. 1990. Sex-differential resource allocation in the subdioecious shrubHebe subalpina. Ecology 71: 1342–1351.

    Article  Google Scholar 

  • Delph, L. F. and T. R. Meagher, manuscript in prep.

  • Druehl, L. D., B. R. Robertson and D. K. Button. 1989. Characterizing and sexing laminarialean meiospores by flow cytometry. Marine Biology 101: 451–456.

    Article  Google Scholar 

  • Fox M. H. and D. W. Galbraith. 1990. Application of flow cytometry and sorting to higher plant systems. In:Flow cytometry and sorting, 2nd ed. (eds. M. R. Melamed, T. Lindmo and M. L. Mendelsohn), pp. 633–650. Wiley-Liss, Inc., New York.

    Google Scholar 

  • Galbraith, D. W., K. R. Harkins, J. M. Maddox, N. M. Ayres, D. P. Sharma and E. Firoozabady. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049–1051.

    Article  CAS  PubMed  Google Scholar 

  • Gross, K. L. and J. D. Soulé. 1981. Differences in biomass allocation to reproductive and vegetative structures of male and female plants of a dioecious, perennial herb,Silene alba (Miller) Krause. Am. J. Bot. 68: 801–807.

    Article  Google Scholar 

  • John, B. 1988. The biology of heterochromatin. In:Heterochromatin: molecular and structural aspects (ed. R. S. Verma), pp. 1–147. Cambridge Univ. Press, New York.

    Google Scholar 

  • Keeler, K. H. 1990. Distribution of polyploid variation in big bluestem (Andropogon gerardii, Poaceae) across the tallgrass prairie region. Genome 33: 95–100.

    Google Scholar 

  • Keeler, K. H., B. Kwankin, P. W. Barnes and D. W. Galbraith. 1987. Polyploid polymorphism inAndropogon gerardii. Genome 29: 374–379.

    Google Scholar 

  • Langlois, R. G., L.-C. Yu, J. W. Gray and A. V. Carrano. 1982. Quantitative karyotyping of human chromosomes by dual beam flow cytometry. Proc. Natl. Acad. Sci. U.S.A. 79: 7876–7880.

    Article  PubMed  CAS  Google Scholar 

  • Latt, S. A., E. Sahar and M. E. Eisenhard. 1979. Pairs of fluorescent dyes as probes of DNA and chromosomes. J. Histochem. Cytochem. 27: 65–71.

    PubMed  CAS  Google Scholar 

  • Lewin, B. 1990. Chapter 28 In:Genes IV [fourth edition]. Oxford University Press, New York.

    Google Scholar 

  • Lloyd, D. G. and C. J. Webb. 1977. Secondary sex characters in plants. Bot. Rev. 43: 177–216.

    Article  Google Scholar 

  • Meagher, T. R. 1984. Sexual dimorphism and ecological differentiation of male and female plants. Ann. Mo. Bot. Gard. 71: 254–264.

    Article  Google Scholar 

  • Meagher, T. R. 1988. Sex determination in plants. In:Plant Reproductive Ecology: Patterns and Strategies (eds. J. Lovett Doust and L. Lovett Doust), pp. 125–138. Oxford Univ. Press, New York.

    Google Scholar 

  • Meagher, T. R. in press. The quantitative genetics of sexual dimorphism inSilene latifolia (Caryophyllaceae) I. Genetic variation. Evolution.

  • Meagher, T. R. and J. Antonovics. 1982. The population biology ofChamaelirium luteum, a dioecious member of the lily family: Life history studies. Ecology 63: 1690–1700.

    Article  Google Scholar 

  • Michaelson, M. J., H. J. Price, J. R. Ellison and J. S. Johnston. 1991. Comparison of plant DNA contents determined by Feulgen microspectrophotometry and laser flow cytometry. Amer. J. Bot. 78: 183–188.

    Article  CAS  Google Scholar 

  • Morrison, D. F. 1976. Chapter 6 In:Multivariate Statistical Methods [second edition]. McGraw Hill, New York.

    Google Scholar 

  • Mulcahy, D. L. 1967. Optimal sex ratio inSilene alba. Heredity 22: 411–423.

    Google Scholar 

  • Pinkel, D., B. L. Gledhill, S. Lake, D. Stephenson and M. A. van Dilla. 1982. Sex preselection in mammals? Separation of sperm bearing Y and «O» chromosomes in the voleMicrotus oregoni. Science 218: 904–906.

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute Inc. 1985.SAS/STAT TM Guide for Personal Computers, Version 6 Edition. SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Sokal, R. R. and F. J. Rohlf. 1981.Biometry [second edition]. W. H. Freeman and Company, New York.

    Google Scholar 

  • Van Dilla, M. A., R. G. Langlois, D. Pinkel, D. Yajko and W. K. Hadley. 1983. Bacterial characterization by flow cytometry. Science 220: 620–622.

    Article  PubMed  Google Scholar 

  • Van Nigtevecht, G. 1966. Genetical studies in dioeciousMelandrium I. Sex-linked and sex-influenced inheritance inMelandrium album andMelandrium dioicum. Genetica 37: 281–306.

    Article  Google Scholar 

  • Van Nigtevecht, G. and J. Van Brederode. 1975. Flavonoid glycosylation genes in European populations ofSilene dioica andS. alba. Heredity 35: 429.

    Google Scholar 

  • Westergaard, M. 1958. The mechanism of sex determination in dioecious flowering plants. Adv. Gen. 9: 217–281.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costich, D.E., Meagher, T.R. & Yurkow, E.J. A rapid means of sex identification inSilene latifolia by use of flow cytometry. Plant Mol Biol Rep 9, 359–370 (1991). https://doi.org/10.1007/BF02672012

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02672012

Key Words

Navigation