Skip to main content
Log in

Developmental role of tryptophan hydroxylase in the nervous system

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The serotonin 5-hydroxytryptamine (5-HT) neurotransmitter system contributes to various physiological and pathological conditions. 5-HT is the first neurotransmitter for which a developmental role was suspected. Tryptophan hydroxylase (TPH) catalyzes the rate-limiting reaction in the biosynthesis of 5-HT. Both TPH1 and TPH2 have tryptophan hydroxylating activity. TPH2 is abundant in the brain, whereas TPH1 is mainly expressed in the pineal gland and the periphery. However, TPH1 was found to be expressed predominantly during the late developmental stage in the brain. Recent advances have shed light on the kinetic properties of each TPH isoform. TPH1 showed greater affinity for tryptophan and stronger enzymic activity than TPH2 under conditions reflecting those in the developing brain stem. Transient alterations in 5-HT homeostasis during development modify the fine wiring of brain connections and cause permanent changes to adult behavior. An increasing body of evidence suggests the involvement of developmental brain disturbances in psychiatric disorders. These findings have revived a long-standing interest in the developmental role of 5-HT-related molecules. This article summarizes our understanding of the kinetics and possible neuronal functions of each TPH during development and in the adult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaufman S. and Fisher D. B. (1974) Pterin-dependent aromatic amino acid hydroxylases. In: Hayaishi O., ed., Molecular Mechanisms of Oxygen Activation, New York and London: Academic Press, pp. 285–369.

    Google Scholar 

  2. Hosoda S. and Glick D. (1965) Biosynthesis of 5-hydroxytryptophan and 5-hydroxytryptamine from tryptophan by neoplastic mouse mast cells. Biochim. Biophys. Acta. 111, 67–78.

    PubMed  CAS  Google Scholar 

  3. Grahame S. D. (1967) The biosynthesis of 5-hydroxytryptamine in brain. Biochem. J. 105, 351–360.

    Google Scholar 

  4. Lovenberg W., Jequier E., and Sjoerdsma A. (1967) Tryptophan hydroxylation: measurement in pineal gland, brainstem, and carcinoid tumor. Science 155, 217–219.

    Article  PubMed  CAS  Google Scholar 

  5. Ichiyama A., Nakamura S., Nishizuka Y., and Hayaishi O. (1970) Enzymic studies on the biosynthesis of serotonin in mammalian brain. J. Biol. Chem. 245, 1699–1709.

    PubMed  CAS  Google Scholar 

  6. Ichiyama A., Hasegawa H., Tohyama C., Dohmoto C., and Kataoka T. (1976) Some properties of bovine pineal tryptophan hydroxylase. Adv. Exp. Med. Bio. 74, 103–117.

    CAS  Google Scholar 

  7. Hosoda S. (1975) Further studies on tryptophan hydroxylase from neoplastic murine mast cells. Biochim. Biophys. Acta. 397, 58–68.

    PubMed  CAS  Google Scholar 

  8. Nakata H. and Fujisawa H. (1982) Tryptophan 5-monooxygenase from mouse mastocytoma P815. A simple purification and general properties. Eur. J. Biochem. 124, 595–601.

    Article  PubMed  CAS  Google Scholar 

  9. Tong, J. H. and Kaufman S. (1975) Tryptoplan hydroxylase. Purification and some properties of the enzyme from rabbit hindbrain. J. Biol. Chem. 250, 4152–4158.

    PubMed  CAS  Google Scholar 

  10. Nakata H. and Fujisawa H. (1982) Purification and properties of tryptophan 5-monooxygenase from rat brain-stem. Eur. J. Biochem. 122, 41–47.

    Article  PubMed  CAS  Google Scholar 

  11. Cash C. D., Vayer P., Mandel P., and Maitre M. (1985) Tryptophan 5-hydroxylase. Rapid purification from whole rat brain and production of a specific antiserum. Eur. J. Biochem. 149, 239–245.

    Article  PubMed  CAS  Google Scholar 

  12. Kuhn D. M., Meyer M. A., and Lovenberg W. (1980) Comparisons of tryptophan hydroxylase from a malignant murine mast cell tumor and rat mesencephalic tegmentum. Arch. Biochem. Biophys. 199, 355–361.

    Article  PubMed  CAS  Google Scholar 

  13. Hasegawa H., Yanagisawa M., Inoue F., Yanaihara N., and Ichiyama A. (1987) Demonstration of non-neural tryptophan 5-mono-oxygenase in mouse intestinal mucosa. Biochem. J. 248, 501–509.

    PubMed  CAS  Google Scholar 

  14. Walther D. J., Peter J. U., Bashammakh S., et al. (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang X., Beaulieu J. M., Sotnikova T. D., Gainetdinov R. R., and Caron M. G. (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305, 217.

    Article  PubMed  CAS  Google Scholar 

  16. Teraoka H., Russell C., Regan J., et al. (2004) Hedgehog and Fgf signaling pathways regulate the development of tphR-expressing serotonergic raphe neurons in zebrafish embryos. J. Neurobiol. 60, 275–288.

    Article  PubMed  CAS  Google Scholar 

  17. Coleman C. M. and Neckameyer W. S. (2005) Serotonin synthesis by two distinct enzymes in Drosophila melanogaster. Arch. Insect Biochem. Physiol. 59, 12–31.

    Article  PubMed  CAS  Google Scholar 

  18. McKinney J., Knappskog P. M., Pereira J., et al. (2004) Expression and purification of human tryptophan hydroxylase from Escherichia coli and Pichia pastoris.

  19. Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol. Psychiatry 44, 151–162.

    Article  PubMed  CAS  Google Scholar 

  20. Lesch K. P. (2004) Gene-environment interaction and the genetics of depression. J. Psychiatry Neurosci. 29, 174–184.

    PubMed  Google Scholar 

  21. Lesch K. P., Bengel D., Heils A., et al. (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531.

    Article  PubMed  CAS  Google Scholar 

  22. Shih J. C., Chen K., and Ridd M. J. (1999) Monoamine oxidase: from genes to behavior. Annu. Rev. Neurosci. 22, 197–217.

    Article  PubMed  CAS  Google Scholar 

  23. Gainetdinov R. R. and Caron M. G. (2003) Monoamine transporters: From genes to behavior. Annu. Rev. Pharmacol. Toxicol. 43, 261–284.

    Article  PubMed  CAS  Google Scholar 

  24. Gaspar P., Cases O., and Maroteaux L. (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci. 4, 1002–1012.

    Article  PubMed  CAS  Google Scholar 

  25. Côté F., Thevenot E., Fligny C., et al. (2003) Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc. Natl. Acad. Sci. U.S.A. 100, 13,525–13,530.

    Article  CAS  Google Scholar 

  26. Nakamura K., Sugawara Y., and Sawabe K., et al. (2006) Late developmental stage-specific role of tryptophan hydroxylase 1 in brain serotonin levels. J. Neurosci. 26, 530–534.

    Article  PubMed  CAS  Google Scholar 

  27. Mann J. J., Malone K. M., Nielsen D. A., Goldman D., Erdos J., and Gelernter J. (1997) Possible association of a polymorphism of the tryptophan hydroxylase gene with suicidal behavior in depressed patients. Am. J. Psychiatry 154, 1451–1453.

    PubMed  CAS  Google Scholar 

  28. Nielsen D. A., Virkkunen M., Lappalainen J., et al. (1998) A tryptophan hydroxylase gene marker for suicidality and alcoholism. Arch. Gen. Psychiatry 55, 593–602.

    Article  PubMed  CAS  Google Scholar 

  29. Rujescu D., Giegling I., Sato T., Hartmann A. M., and Moller H. J. (2003) Genetic variations in tryptophan hydroxylase in suicidal behavior: analysis and meta-analysis. Biol. Psychiatry 54, 465–473.

    Article  PubMed  CAS  Google Scholar 

  30. Bellivier F., Chaste P., and Malafosse A. (2004) Association between the TPH gene A218C polymorphism and suicidal behavior: a meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 124, 87–91.

    Article  PubMed  Google Scholar 

  31. Peters E. J., Slager S. L., McGrath P. J., Knowles J. A., and Hamilton S. P. (2004) Investigation of serotonin-related genes in antide-pressant response. Mol. Psychiatry 9, 879–889.

    Article  PubMed  CAS  Google Scholar 

  32. Ichiyama A., Hori S., Mashimo Y., Nukiwa T., and Makuuchi H. (1974) The activation of bovine pineal tryptophan 5-monooxygenase. FEBS Lett. 40, 88–91.

    Article  Google Scholar 

  33. Ichiyama A., Hasegawa H., Tohyama C., Dohmoto C., and Kataoka T. (1976) Some properties of bovine pineal tryptophan hydroxylase. Adv. Exp. Med. Biol. 74, 103–117.

    PubMed  CAS  Google Scholar 

  34. Inoue F., Hasegawa H., Yamada M., and Ichiyama A. (1987) The serotonin content and tryptophan 5-monooxygemase activity in the stomach of an athymic mouse and mast cell-deficient mouse. Biomed. Res. 8, 53–59.

    CAS  Google Scholar 

  35. Hasegawa H., Yanagisawa M., and Ichiyama A. (1983) Three discrete activity states of mastocy toma tryptophan 5-monooxygenase. In: Nozaki M., Yamamoto S., Ishimura Y., Coon M. J., Ernster L., and Estabrook R.W., eds., Oxygenases and Oxygen Metabolism, London, UK: Academic Press, pp. 296–304.

    Google Scholar 

  36. Yanagisawa M., Hasegawa H., Ichiyama A., Hosoda S., and Nakamura W. (1984) Comparison of serotonin-producing murine mastocytomas, P-815 and FMA3: Determination of tryptophan hydroxylase, aromatic L-amino acid decarboxylase, and cellular concentration of tryptophan, 5-hydroxytryptophan, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Biomed. Res. 5, 19–28.

    CAS  Google Scholar 

  37. Hasegawa H. and Ichiyama A. (2005) Distinctive iron requirement of tryptophan 5-monooxygenase: TPH1 requires dissociable ferrous iron. Biochem. Biophys. Res. Commun. 338, 277–284.

    Article  PubMed  CAS  Google Scholar 

  38. Ehret M., Cash C. D., Hamon M., and Maitre M. (1989) Formal demonstration of the phosphorylation of rat brain tryptophan hydroxylase by Ca2+/calmodulin-dependent protein kinase. J. Neurochem. 52, 1886–1891.

    Article  PubMed  CAS  Google Scholar 

  39. Makita Y., Okuno S., and Fujisawa H. (1990) Involvement of activator protein in the activation of tryptophan hydroxylase by cAMP-dependent protein kinase. FEBS Lett. 268, 185–188.

    Article  PubMed  CAS  Google Scholar 

  40. Hasegawa H., Kojima M., Oguro K., and Nakanishi N. (1995) Rapid turnover of tryptophan hydroxylase in serotonin producing cells: demonstration of ATP-dependent proteolytic degradation. FEBS Lett. 368, 151–154.

    Article  PubMed  CAS  Google Scholar 

  41. Kojima M., Oguro K., Sawabe K., et al. (2000) Rapid turnover of tryptophan hydroxylase is driven by proteasomes in RBL2H3 cells, a serotonin producing mast cell line. J. Biochem. (Tokyo) 127, 121–127.

    CAS  Google Scholar 

  42. Iida Y., Sawabe K., Kojima M., Oguro K., Nakanishi N., and Hasegawa H. (2002) Proteasome-driven turnover of tryptophan hydroxylase is triggered by phosphorylation in RBL2H3 cells, a serotonin producing mast cell line. Eur. J. Biochem. 269, 4780–4788.

    Article  PubMed  CAS  Google Scholar 

  43. McKinney J., Knappskog P. M., and Haavik J. (2005) Different properties of the central and peripheral forms of human tryptophan hydroxylase. J. Neurochem. 92, 311–320.

    Article  PubMed  CAS  Google Scholar 

  44. Abbar M., Courtet P., Bellivier F., et al. (2001). Suicide attempts and the tryptophan hydroxylase gene. Mol. Psychiatry 6, 268–273.

    Article  PubMed  CAS  Google Scholar 

  45. Rujescu D., Giegling I., Sato T., Hartmann A. M., and Moller H. J. (2003) Genetic variations in tryptophan hydroxylase in suicidal behavior: analysis and meta-analysis. Biol. Psychiatry 54, 465–473.

    Article  PubMed  CAS  Google Scholar 

  46. Bellivier F., Leboyer M., Courtet P., et al. (1998) Association between the tryptophan hydroxylase gene and manic-depressive illness. Arch. Gen. Psychiatry 55, 33–37.

    Article  PubMed  CAS  Google Scholar 

  47. Furlong R. A., Ho L., Rubinsztein J. S., Walsh C., Paykel E. S., and Rubinsztein D. C. (1998) No association of the tryptophan hydroxylase gene with bipolar affective disorder, unipolar affective disorder, or suicidal behaviour in major affective disorder. Am. J. Med. Genet. 81, 245–247.

    Article  PubMed  CAS  Google Scholar 

  48. Kirov G., Owen M. J., Jones I., McCandless F., and Craddock N. (1999) Tryptophan hydroxylase gene and manic-depressive illness. Arch. Gen. Psychiatry 56, 98,99.

    Article  PubMed  CAS  Google Scholar 

  49. McQuillin A., Lawrence J., Kalsi G., Chen A., Gurling H., and Curtis D. (1999) No allelic association between bipolar affective disorder and the tryptophan hydroxylase gene. Arch. Gen. Psychiatry 56, 99–101

    Article  PubMed  CAS  Google Scholar 

  50. Tsai S. J., Hong C. J., and Wang Y. C. (1999) Tryptophan hydroxylase gene polymorphism (A218C) and suicidal behaviors. Neuroreport 10, 3773–3775.

    Article  PubMed  CAS  Google Scholar 

  51. Courtet P., Jollant F., Castelnau D., Buresi C., and Malafosse A. (2005) Suicidal behavior: relationship between phenotype and serotonergic genotype. Am. J. Med. Genel. C Semin. Med. Genet. 133, 25–33.

    Article  Google Scholar 

  52. Cervo L., Canetta A., Calcagno E., et al. (2005) Genotype-dependent activity of tryptophan hydroxylase-2 determines the response to citalopram in a mouse model of depression. J. Neurosci. 25, 8165–8172.

    Article  PubMed  CAS  Google Scholar 

  53. Crowley J. J., Blendy J. A., and Lucki I. (2005) Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology (Berl) 183, 257–264.

    Article  CAS  Google Scholar 

  54. Lipton S. A. and Kater S. B. (1989) Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci. 12, 265–270.

    Article  PubMed  CAS  Google Scholar 

  55. Lauder J. M. (1993) Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 16, 233–239.

    Article  PubMed  CAS  Google Scholar 

  56. Levitt P., Harvey J. A., Friedman E., Simansky K., and Murphy E. H. (1997) New evidence for neurotransmitter influences on brain development. Trends Neurosci. 20, 269–274.

    Article  PubMed  CAS  Google Scholar 

  57. Azmitia E. C. (2001) Modern view on an ancient chemical: serotonin effects on proliferation, maturation, and apoptosis. Brain Res. Bull. 56, 414–424.

    Article  Google Scholar 

  58. Vitalis T. and Parnavelas J. (2003) Serotonin and cortical development. Exp. Neurol. 25, 245–256.

    Article  CAS  Google Scholar 

  59. Hendricks T. J., Francis N., Fyodorov D. J. and Deneris E. S. (1999) The ETS domain factor Pet-1 is an early and precise marker of central 5-HT neurons and interacts with a conserved element in serotonergic genes. J. Neurosci. 19, 10,348–10,356.

    CAS  Google Scholar 

  60. Pfaar H., von Holst A., Vogt Weisenhorn D. M., Brodski C., Guimera J., and Wurst W. (2002) mPet-1, a mouse ETS-domain transcription factor, is expressed in central serotonergic neurons. Dev. Genes Evol. 212, 43–46.

    Article  PubMed  CAS  Google Scholar 

  61. De Vitry F., Hamon M., Catelon J., Dubois M., and Thibault J. (1986) Serotonin initiates and autoamplifies its own synthesis during mouse central nervous system development. Proc. Natl Acad. Sci. USA 83, 8629–8633.

    Article  PubMed  Google Scholar 

  62. Galter D. and Unsicker K. (2000) Sequential activation of the 5-HT1A serotonin receptor and TrkB induces the serotonergic neuronal phenotype. Am. J. Anat. 15, 446–455.

    CAS  Google Scholar 

  63. Whitaker-Azmitia P. M. and Azmitia E. C. (1989) Stimulation of astroglial serotonin receptors produces culture media which regulates growth of serotonergic neurons. Brain Res. 497, 80–85.

    Article  PubMed  CAS  Google Scholar 

  64. Salichon N., Gaspar P., Upton A. L., et al. (2001) Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase and 5-HT transporter knock-out mice. J. Neurosci. 21, 884–896.

    PubMed  CAS  Google Scholar 

  65. Luna B. and Sweeney J. A. (2001) Studies of brain and cognitive maturation through childhood and adolescence: a strategy for testing neurodevelopmental hypotheses. Schizophr. Bull. 27, 443–455.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, K., Hasegawa, H. Developmental role of tryptophan hydroxylase in the nervous system. Mol Neurobiol 35, 45–53 (2007). https://doi.org/10.1007/BF02700623

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02700623

Index Entries

Navigation